纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 206-214.doi: 10.13475/j.fzxb.20240401001

• 机械与设备 • 上一篇    下一篇

低能耗喷气涡流纺喷嘴气流场数值模拟与纺纱实验

奚传智, 王家源, 王泳智, 陈革, 裴泽光()   

  1. 东华大学 机械工程学院, 上海 201620
  • 收稿日期:2024-04-01 修回日期:2024-09-02 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 裴泽光(1982—),男,教授,博士。研究方向为纺织工艺与设备及其相关流体力学。E-mail: zgpei@dhu.edu.cn
  • 作者简介:奚传智(1997—),男,博士生。主要研究方向为喷气涡流纺纱理论与技术。
  • 基金资助:
    国家自然科学基金项目(11972116);上海市自然科学基金项目(23ZR1401600);中央高校基本科研业务费专项资金资助项目(2232023Y-01)

Numerical simulation of airflow field in nozzle of vortex spinning with low energy consumption and spinning experimentation

XI Chuanzhi, WANG Jiayuan, WANG Yongzhi, CHEN Ge, PEI Zeguang()   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2024-04-01 Revised:2024-09-02 Published:2024-12-15 Online:2024-12-31

摘要:

为探究喷嘴气压与喷射孔数量对喷气涡流纺喷嘴能耗与气流机械能特性的影响规律,采用计算流体动力学对喷嘴内气流流动特征进行数值模拟,基于静压特性和机械能特性对喷嘴耗气量和成纱强度进行预测,并与纺纱实验结果进行对比分析。结果表明:随着喷嘴气压的增加,喷嘴内静压值总体呈现降低趋势,而喷射孔出口附近静压值增加,喷嘴内气流机械能随喷嘴气压增加而呈现增大的趋势;随着喷射孔数量的增加,喷嘴内静压值呈现先降低后增加的趋势,而喷射孔出口处静压变化并不显著,加捻腔内气流的机械能呈现先增加后降低的趋势,而锭子与涡流管间环形区域中气流的机械能单调递增。基于数值模拟对耗气量和成纱强度的预测与实验测试结果一致,为揭示参数对喷气涡流纺成纱过程中喷嘴能耗的影响提供有效的方法,为低能耗喷气涡流纺纱喷嘴的设计提供理论参考。

关键词: 喷气涡流纺, 喷嘴, 流场, 机械能, 耗气量, 数值模拟

Abstract:

Objective Vortex spinning has been developed rapidly in recent years due to its unique advantages. However, the issue of excessive energy consumption of the vortex spinning nozzle is still unresolved. In order to reduce the energy consumption during the vortex spinning process without significantly influence the yarn strength, this study investigates the effect of the nozzle pressure (P) and the number of the injectors (N) on the air consumption of the nozzle and the strength of vortex spun yarn.

Method The computational fluid dynamics (CFD) method was adopted to simulate the airflow characteristics inside the nozzle. The air consumption and the yarn tenacity were predicted based on the static pressure and mechanical energy of the airflow. The air flow rate and yarn strength were experimentally measured to verify the numerical results.

Result Due to the pressure difference between the nozzle inlet and the vortex chamber, the mechanical energy of the airflow slightly increased in the fiber guiding passage. The mechanical energy of the airflow reached its maximum value in the region around the spindle tip with the influence of the air-jet. Then the mechanical energy of the airflow exhibited a decreasing trend in the annular region between the spindle and the vortex tube along the positive Z-axis. With the increase of nozzle pressure from 0.4 MPa to 0.6 MPa, the static pressure in the vortex chamber and the annular region between the spindle and the vortex tube generally showed a decreasing trend, as the static pressure at the injector exits was increases. The pressure difference between the air reservoir and the injector exits was further increased along with the increase of the nozzle pressure, resulting in the increase of air consumption. The mechanical energy of the airflow in the vortex chamber was slightly increased with the increase of the nozzle pressure, resulting in an increased efficiency of fiber separation. The mechanical energy of the airflow was increased significantly in the annular region between the spindle and the vortex tube, resulting in an initial increase followed by a decrease in the twisting efficiency. With the increase of the number of injectors, the static pressure was first decreased and then increased in the vortex chamber, while the pressure in the annular region between the spindle and the vortex tube was decreased. There was negligible variation in the static pressure at the injector exits, this gaving an insignificant difference in the flow rate through a single injector. The mechanical energy of the airflow in the vortex chamber was first increased and then decreased with the increase of the number of injectors, while the mechanical energy of the airflow in the annular region between the spindle and the vortex tube was increased monotonously. It is crear that either an excessive or an insufficient number of injectors was favorable for fiber separation and twist insertion. The experimental measurements showed that the flow rate of the airflow entering the nozzle exhibiteds an increasing trend as P increases, while the yarn tenacity was initially increased and then decreased. With the increase of N, the flow rate of the airflow entering the nozzle tended to be directly proportional to the number of injectors, while the yarn tenacity was first increased followed by a decrease.

Conclusion The mechanical energy of the airflow is low in the vortex chamber and the yarn passage, while was relatively high in the annular region between the vortex tube and the spindle. With the nozzle pressure was increased from 0.4 MPa to 0.6 MPa. It was found that the air consumption of the nozzle is positively related to the number of injectors. The prediction of air consumption is generally consistent with the experimental measurement of the flow rate. The mechanical energy of the airflow in the nozzle was increased as P increases, and as N increases, the mechanical energy of the airflow in the vortex chamber initially is increases and then decreases. The prediction of yarn strength is consistent with the experimental measurements. Overall, considering the requirement for yarn tenacity, the air consumption of the nozzle is the minimum when P=0.45 MPa and N=4.

Key words: vortex spinning, nozzle, flow field, mechanical energy, air consumption, numerical simulation

中图分类号: 

  • TS112.2

图1

喷嘴结构示意图 1—纤维导引元件; 2—喷嘴入口; 3—气室; 4—涡流管; 5—锭子; 6—引纱管; 7—喷嘴外壳; 8—排气通道; 9—纱线通道; 10—喷嘴出口。"

表1

模拟和纺纱实验参数"

工况 喷嘴气压/MPa 喷射孔数量/个
1 0.40 4
2 0.45 4
3 0.50 4
4 0.55 4
5 0.60 4
6 0.50 3
7 0.50 5
8 0.50 6

图2

网格密度对Z=15.9 mm横截面内气流速度的影响"

图3

喷嘴内流场网格划分"

图4

X=0 mm和Y=0 mm平面内喷嘴内部气流机械能云图与流线图"

图5

X=0 mm平面内锭子和涡流管之间环形区域的不同横截面气流机械能径向分布"

图6

不同喷嘴气压下喷嘴内部静压特性"

图7

不同喷嘴气压下沿Z轴方向每隔1 mm平均机械能变化"

图8

不同喷嘴气压下喷嘴内部气流机械能沿喷嘴的径向分布"

图9

不同喷射孔数量下喷嘴内部静压特性"

图10

不同喷射孔数量下沿Z轴方向每隔1 mm平均机械能变化"

图11

不同喷孔数量下径向方向选取示意图"

图12

不同喷射孔数量下喷嘴内部气流机械能沿喷嘴径向的分布规律"

图13

不同喷嘴气压和喷射孔数量下气流流量和纱线断裂强度的实验结果"

[1] 邵英海, 赵业平, 韩贤国, 等. 喷气涡流纺纱机及其关键技术的应用与研究进展[J]. 纺织学报, 2024, 45(3): 209-218.
SHAO Yinghai, ZHAO Yeping, HAN Xianguo, et al. Study on fiber mixing effect in ring spun, rotor and air-jet-vortex spun color blended yarns[J]. Journal of Textile Research, 2024, 45(3): 209-218.
[2] YANG R H, PAN B, WANG L J, et al. Blending effects and performance of ring-, rotor-, and air-jet-spun color-blended viscose yarns[J]. Cellulose, 2021, 28(3):1769-1780.
[3] 杨克孝, 虞明聪, 孙江挺. 纯棉喷气涡流色纺纱成纱质量的影响因素分析[J]. 棉纺织技术, 2020, 48(12): 47-50.
YANG Kexiao, YU Mingcong, SUN Jiangting. Analysis on influencing factors of pure cotton air-jet vortex spinning yarn quality[J]. Cotton Textile Technology, 2020, 48(12): 47-50.
[4] 缪璐璐, 董正梅, 朱繁强, 等. 芯丝种类与纺纱速度对喷气涡流纺包芯纱性能的影响[J]. 纺织学报, 2023, 44(12): 50-57.
LIAO Lulu, DONG Zhengmei, ZHU Fanqiang, et al. Influence of core filament type and delivery speed on performance of air-jet vortex spun core-spun yarns[J]. Journal of Textile Research, 2023, 44(12): 50-57.
[5] BHATTI MRA, TAUSIF M, MIR M A, et al. Effect of key process variables on mechanical properties of blended vortex spun yarns[J]. Journal of The Textile Institute, 2019, 110(6): 932-940.
[6] 邹专勇, 缪璐璐, 董正梅, 等. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(8): 27-33.
ZOU Zhuanyong, LIAO Lulu, DONG Zhengmei, et al. Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns[J]. Journal of Textile Research, 2022, 43(8): 27-33.
[7] 梁高翔, 王青, 吕绪山, 等. 喷气涡流纺喷嘴参数对内流场特性的影响[J]. 轻工机械, 2023, 41(1):16-22.
LIANG Gaoxiang, WANG Qing, LÜ Xushan, et al. Influence of nozzle parameters on internal flow field characteristics of air-jet vortex spinning[J]. Light Industry Machinery, 2023, 41(1): 16-22.
[8] 朱江阳, 奚传智, 王泳智, 等. 抽吸孔结构对喷气涡流纺喷嘴气流场的影响[J]. 棉纺织技术, 2023, 51(8):19-25.
ZHU Jiangyang, XI Chuanzhi, WANG Yongzhi, et al. Effects of air suction hole structure on nozzle airflow of air jet vortex spinning[J]. Cotton Textile Technology, 2023, 51(8): 19-25.
[9] PEI Z G, WANG X B, LI Z, et al. Effect of process and nozzle structural parameters on the wrapping quality of core-spun yarns produced on a modified vortex spinning system[J]. Textile Research Journal, 2021, 91(15/16): 1841-1856.
[10] RAO X X, JIN C, ZHANG H T, et al. A hybrid microchannel heat sink with ultra-low pressure drop for hotspot thermal management[J]. International Journal of Heat and Mass Transfer, 2023, 211: 124201.
[11] XU X G, FANG L, LI A J, et al. 3D numerical investigation of energy transfer and loss of cavitation flow in perforated plates[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 1095-1105.
[12] SHANG S S, YANG J P, YU C W. Numerical simulation of the airflow field in vortex spinning processing[J]. Textile Research Journal, 2019, 89(6): 1113-1127.
[13] CENGEL Y A, CIMBALA J M. Fluid mechanics: fundamentals and applications[M]. New York: McGraw-Hill, 2014: 194-196.
[1] 王珏, 晏石林, 李永静, 何龙飞, 谢翔宇, 孟晓旭. 剪切变形对各向异性织物主渗透率及浸润特性的影响[J]. 纺织学报, 2024, 45(12): 109-117.
[2] 吕汉明, 梁金辉, 马崇启, 端木德庆. 热风黏合烘箱有限元仿真分析与结构优化[J]. 纺织学报, 2024, 45(10): 216-223.
[3] 张定眺, 王倩茹, 邱芳, 李凤艳. 转杯纺分梳排杂区气流场的多维数值模拟对比[J]. 纺织学报, 2024, 45(10): 64-71.
[4] 田少萌, 张丽, 石浩轩, 徐阳. 基于ANSYS Workbench的高密机织滤料动态形变模拟与分析[J]. 纺织学报, 2024, 45(09): 63-69.
[5] 张琦, 左露娇, 屠佳妮, 聂美婷. 经编贾卡鞋面材料透气性的数值模拟[J]. 纺织学报, 2024, 45(09): 78-83.
[6] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[7] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[8] 刘倩倩, 尤健明, 王琰, 孙成磊, 祝国成. 纤维弯曲对其集合体过滤特性影响的稳态数值分析[J]. 纺织学报, 2024, 45(07): 31-39.
[9] 方敬兵, 沈敏, 李俊祥, 王真, 余联庆. 纤维束与异形筘内合成气流的相互耦合作用[J]. 纺织学报, 2024, 45(03): 194-201.
[10] 邵英海, 赵业平, 韩贤国, 曹继鹏, 张明光, 陈文. 喷气涡流纺纱机及其关键技术的应用与研究进展[J]. 纺织学报, 2024, 45(03): 209-218.
[11] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[12] 丁彩红, 左今朝. 不停丝自动化铲板系统的集排丝技术研究[J]. 纺织学报, 2023, 44(12): 162-169.
[13] 肖世超, 沈敏, 方敬兵, 王真, 余联庆. 主喷嘴与高速异形孔辅助喷嘴引纬合成流场特性[J]. 纺织学报, 2023, 44(12): 181-188.
[14] 缪璐璐, 董正梅, 朱繁强, 荣慧, 何林伟, 郑国全, 邹专勇. 芯丝种类与纺纱速度对喷气涡流纺包芯纱性能的影响[J]. 纺织学报, 2023, 44(12): 50-57.
[15] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
Viewed
Full text
31
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 5 0 0 26

  From Others local
  Times 6 25
  Rate 19% 81%

Abstract
83
Just accepted Online first Issue
0 0 83
  From Others local
  Times 64 19
  Rate 77% 23%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!