纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 197-205.doi: 10.13475/j.fzxb.20240404201

• 机械与设备 • 上一篇    下一篇

基于软体手指的自动翻布装置及其应用效果

王建萍1,2,3,4, 翁雨鑫1,2,3, 沈津竹1,2,3(), 张帆5, 刘霂珂1   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    3.东华大学 上海市纺织智能制造与工程一带一路国际联合实验室, 上海 200051
    4.同济大学上海国际设计创新研究院, 上海 200092
    5.苏州柔触机器人科技有限公司, 江苏 苏州 215600
  • 收稿日期:2024-04-17 修回日期:2024-09-20 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 沈津竹(1996—),女,博士生。主要研究方向为服装先进制造技术。E-mail:1219101@mail.dhu.edu.cn
  • 作者简介:王建萍(1962—),女,教授,博士。主要研究方向为服装先进制造技术。
  • 基金资助:
    张家港市科技计划项目(ZKYY2337);上海高校本科重点教改项目(SJG23-06);中国纺织工业联合会高等教育教学改革项目(2021BKJGLX123)

Automatic fabric flipping device based on soft fingers and its application effect

WANG Jianping1,2,3,4, WENG Yuxin1,2,3, SHEN Jinzhu1,2,3(), ZHANG Fan5, LIU Xianke1   

  1. 1. College of Fashion and Art Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Donghua University, Shanghai 200051, China
    4. Shanghai International College of Design & Innovation, Tongji University, Shanghai 200092, China
    5. Suzhou Rochu Robotics Co., Ltd., Suzhou, Jiangsu 215600, China
  • Received:2024-04-17 Revised:2024-09-20 Published:2025-01-15 Online:2025-01-15

摘要:

为实现缝纫工序中自动化设备间的无缝衔接,提高协同工作效率,采用气动驱动装置驱动杆件直线移动来模拟人手的翻布动作,设计了一种自动翻布装置,可完全替代人手操作,在软体手指的配合下完成面料的自动抓取、分离,并将缝合后的2层布片自动展平;在此基础上归纳了影响该翻布装置效果的因素,从布片偏转角度和偏移距离2个维度评价其翻布效果,建立了二维5级评价模型。然后选取3种市面上常见的面料,完成2层布片缝合操作后,通过正交试验分别分析其在5、10和15 mm缝份下的最优翻布工艺因素配伍方案,并结合多元回归分析方法建立基于织物性能的翻布效果预测模型。验证结果表明,该预测模型的预测准确率为80%,具有较好的预测性和参考价值,可有效减少人工干预,提高生产一致性,促进服装生产全自动智能化发展。

关键词: 自动翻布装置, 缝制工序, 软体手指, 气动驱动, 智能织造, 多元回归

Abstract:

Objective In order to achieve the seamless connection between the automatic equipment in the sewing process and to improve the collaborative work efficiency, the joined fabric pieces after sewing need unfolding before ironing process. In order to optimize the manual repetitive process of fabric retrieval and flipping, the linear movement of a rod driven by a pneumatic drive device was applied to simulate the fabric flipping action by human hands, leading to the design of an automatic fabric flipping device. Combined with soft fingers, this device is expected to automatically grab and separate cloth and unfold two sewed fabrics before the transfer and ironing processes.

Method The fabric flipping device was designed to summarize factors affecting the performance of the device. Its effect was evaluated by the deflection angle and the slip distance, and a two-dimensional 5-level evaluation model was established. Thereafter, three common production fabrics on the market were selected, the two-layer fabric sewing operation was completed to analyze the optimal combination plan for fabric flipping process factors through orthogonal experiments under 5, 10 and 15 mm seam allowances. A prediction model of fabric flipping effect for common production fabrics was built combining multiple regression analysis method.

Results Through the orthogonal test of fabric flipping effect, the influencing factors of fabric flipping effect for different fabrics were discussed. The optimal compatibility combinations of the influencing factors for different fabrics were summarized. This result has extensive applicability and facilitates the application of the fabric flipping device in actual production. By employing the multiple linear regression analysis method, a prediction model for the relationship among the fabric, device structure, and fabric flipping effect was established. The prediction accuracy of the model reached 80%, demonstrating good predictability. Using this model, the actual fabric flipping effect values of different fabrics were predicted, and recommendations for the corresponding fabric parameters, device parameters, and fabric flipping process requirements were achieved.

Conclusion The automatic fabric flipping device designed has the characteristics of simple structure and convenient operation, which enables automatic fabric flipping operation under the coordinated cooperation of soft finger fingers in the sewing process, effectively reducing manual intervention and improving production efficiency. At the same time, the device provides convenience for subsequent operations such as transportation and ironing, providing reference for completing the entire sewing process automation, indicating that automatic fabric flipping technology has good application prospects and reference value in garment industry.

Key words: automatic fabric flipping device, sewing process, soft finger, pneumatic drive, intelligent manufacturing, multiple regression

中图分类号: 

  • TS941.52

图1

人手翻布操作动作分解图"

图2

双指软体手指模型及不同气压状态"

图3

翻布装置两视角结构图"

图4

翻布装置和软体手指的位置布局"

图5

翻布装置翻布操作示意图"

图6

评价法中维度示意图"

图7

二维5级评价模型"

表1

织物参数及布片编号"

布片
编号
缝份/
mm
织物
类型
面密度/
(g·m-2)
厚度/
mm
摩擦因数
经向 纬向
1# 5 纯棉
平纹布
232.4 0.45 0.18 0.19
2# 10
3# 15
4# 5 涤纶/棉罗纹
针织布
234.5 1.12 0.65 1.02
5# 10
6# 15
7# 5 涤纶/棉混纺
牛仔布
287.4 0.62 1.10 0.83
8# 10
9# 15

图8

下压距离和边缘距离描述"

表2

因素水平表"

水平 A
下压距离/mm
B
下降时长/s
C
边缘距离/mm
D
平滑时长/s
1 0 2.5 40 0.2
2 3 1.5 90 1.1
3 6 1.0 70 2.0

表3

1#布片翻布效果及正交试验计算结果"

试验编号 A B C D 翻布效果评分
1 1 1 1 1 3.33
2 1 2 2 2 4
3 1 3 3 3 4.67
4 2 1 2 3 4
5 2 2 3 1 4.33
6 2 3 1 2 4
7 3 1 3 2 4
8 3 2 1 3 3
9 3 3 2 1 5
k1 4.00 3.78 3.44 4.22
k2 4.11 3.78 4.33 4.00
k3 4.00 4.56 4.33 3.89
R 0.11 0.78 0.89 0.33

表4

单因素方差分析结果"

来源 III类
平方和
自由度 均方 F检验
统计值
显著性
修正模型 8.889 6 1.481 14.286 <0.01
截距 440.037 1 440.037 4 243.21 <0.01
下降时长(B) 3.63 2 1.815 17.5 <0.01
边缘距离(C) 4.741 2 2.37 22.857 <0.01
平滑时长(D) 0.519 2 0.259 2.5 0.107
误差 2.074 20 0.104
总计 451 27
修正后总计 10.963 26

表5

不同布片的最佳因素配伍组合"

布片编号 最佳因素配伍组合
1# A2B3C3D1
2# A2B1C3D2
3# A2B2C3D2
4# A1B1C2D1
5# A3B1C2D1
6# A2B3C2D2
7# A3B2C2D3
8# A3B2C2D2
9# A3B1C2D2

表6

翻布效果值与各影响因素间的相关性"

影响因素 相关性指标 翻布效果值
下压距离(A) 皮尔逊相关性 0.366**
显著性(双尾) 0.001
下降时长(B) 皮尔逊相关性 -0.002
显著性(双尾) 0.989
边缘距离(C) 皮尔逊相关性 0.392**
显著性(双尾) 0.000
平滑时长(D) 皮尔逊相关性 0.017
显著性(双尾) 0.879
织物缝份 皮尔逊相关性 -0.039
显著性(双尾) 0.731
织物面密度 皮尔逊相关性 -0.131
显著性(双尾) 0.243
织物厚度 皮尔逊相关性 -0.385**
显著性(双尾) 0.000
经向摩擦因数 皮尔逊相关性 -0.322**
显著性(双尾) 0.003
纬向摩擦因数 皮尔逊相关性 -0.450**
显著性(双尾) 0.000

表7

翻布效果回归模型系数表"

模型因素 非标准化
系数
标准化
系数
t 显著性
P
共线性
诊断
B 标准
错误
Beta 容差 VIF
常数项 2.838 0.437 6.491 <0.001
下压距离(A) 0.175 0.039 0.366 4.473 <0.001 1.000 1.000
边缘距离(C) 0.022 0.005 0.392 4.784 <0.001 1.000 1.000
织物厚度 -1.338 0.348 -0.325 -3.846 <0.001 0.938 1.067
经向摩擦因数 -0.749 0.263 -0.241 -2.851 0.006 0.938 1.067

图9

翻布效果实际试验值与预测值对比"

[1] 王友发, 周献中. 国内外智能制造研究热点与发展趋势[J]. 中国科技论坛, 2016 (4): 154-160.
WANG Youfa, ZHOU Xianzhong. A review of research on domestic and international intelligent manu-facturing[J]. Forum on Science and Technology in China, 2016 (4): 154-60.
[2] 霍嫱. 智能制造技术在纺织服装业的发展趋势分析[J]. 西部皮革, 2022, 44(22): 18-20.
HUO Qiang. Analysis of the development trend of intelligent manufacturing technology in textile and garment industry[J]. West Leather, 2022, 44(22): 18-20.
[3] 墨影, 孟庆杰. 服装智能制造进行时[J]. 纺织机械, 2016 (6): 28-29.
MO Ying, MENG Qingjie. Ongoing intelligent manufacturing in the apparel industry[J]. Textile Machinery, 2016 (6): 28-29.
[4] YUBA H, ARNOLD S, YAMAZAKI K. Unfolding of a rectangular cloth from unarranged starting shapes by a dual-armed robot with a mechanism for managing recognition error and uncertainty[J]. Advanced Robotics, 2017, 31(10): 544-556.
[5] 沈津竹. 基于软体手指的服装裁片堆垛抓取模型研究[D]. 无锡: 江南大学, 2022:25-37.
SHEN Jinzhu. Grasping model of garment cutting pieces for robotic soft fingers[D]. Wuxi: Jiangnan University, 2022: 25-37.
[6] YAMAZAKI K, ABE T. A versatile end-effector for pick-and-release of fabric parts[J]. IEEE Robot Autom Let, 2021, 6(2): 1431-1438.
[7] 高晓飞, 齐立哲, 孙云权. 面向柔性面料立体缝纫的随形机械手设计[J]. 纺织学报, 2022, 43(9): 27-33.
GAO Xiaofei, QI Lizhe, SUN Yunquan. Design of shape-following manipulator for three-dimensional sewing of flexible fabrics[J]. Journal of Textile Research, 2022, 43(9): 27-33.
[8] LEE S, RHO S, LIM D, et al. A basic study on establishing the automatic sewing process according to textile properties[J]. Processes, 2021. DOI:10.3390/pr9071206.
[9] YOSHIMI T, TAKEZAWA K, HIRAYAMA M. An improvement of trajectory tracking accuracy of automatic sewing robot system by variable gain learning control[J]. IFAC-Papers On Line, 2018, 51(22): 1-6.
[10] SHUNGO T, HISASHI D. Development of fabric feed mechanism using horizontal articulated dual manipulator for automated sewing [C]// 17th IEEE International Conference on Automation Science and Enginee-ring (CASE). New York: IEEE, 2021: 1832-1837.
[11] 李晓茜, 章煜佳, 农苑樱. 基于图像识别的家用自动蒸汽熨烫装置[J]. 科学技术创新, 2020 (36): 191-192.
LI Xiaoqian, ZHANG Yujia, NONG Yuanying. Home automatic steam ironing device based on image recognition[J]. Scientific and Technological Innovation, 2020 (36): 191-192.
[12] 王文学. 针织服装标志自动熨烫装置的设计[J]. 针织工业, 2011(12): 43-44.
WANG Wenxue. Design of automatic ironing device for knitwear logo[J]. Knitting Industries, 2011(12): 43-44.
[13] 陈旭, 谢战争, 徐梦龙, 等.一种翻布机:202323055180.7 [P]. 2024-05-10.
CHEN Xu, XIE Zhanzheng, XU Menglong, et al. A cloth turning machine: 202323055180.7 [P]. 2024-05-10.
[14] 黄鹏, 黄从友, 吴欣玮, 等.一种翻布装置:202321554443.6 [P]. 2023-12-29.
HUANG Peng, HUANG Congyou, WU Xinwei, et al. A cloth turning device: 202321554443.6 [P]. 2023-12-29.
[15] 李金庆, 王广彬, 王硕, 等.一种自动翻布机:202222175348.7 [P]. 2022-12-16.
LI Jinqing, WANG Guangbin, WANG Shuo, et al. An automatic cloth turning machine:202222175348.7 [P]. 2022-12-16.
[16] 陆宏, 张壮. 织物分层机构及单层织物抓取装置、打码机和翻布方法:202110570949.5 [P]. 2022-11-25.
LU Hong, ZHANG Zhuang. Fabric layering mechanism, single-layer fabric grasping device, coding machine and turning cloth method: 202110570949.5 [P]. 2022-11-25.
[17] SCHRIMPF J, WETTERWALD L E. Experiments towards automated sewing with a multi-robot system[C]// IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, 2012: 5258-5263.
[18] SCHRIMPF J, WETTERWALD L E, LIND M, et al. Real-time system integration in a multi-robot sewing cell[C]// 25th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: IEEE, 2012: 2724-29.
[19] 沈津竹, 苏军强. 软体机械手逐层分离服装裁片的影响因素[J]. 服装学报, 2021, 6(4): 357-365,373.
SHEN Jinzhu, SU Junqiang. Influence factors of the soft manipulator to separate the garment cutting pieces layer by layer[J]. Journal of Clothing Research, 2021, 6(4): 357-365,373.
[1] 戴宁, 徐开心, 胡旭东, 徐郁山. 云边端协同下的织机设备信息采集与监测系统[J]. 纺织学报, 2024, 45(08): 215-224.
[2] 王建萍, 沈津竹, 姚晓凤, 朱妍西, 张帆. 服装裁片自动抓取技术及其布局方法的研究进展[J]. 纺织学报, 2024, 45(06): 227-234.
[3] 张伍连 丁辛 杨旭东. 方平组织PVC涂层膜材料的塑性变形性能[J]. 纺织学报, 2011, 32(7): 65-69.
[4] 庄 鄂;王府梅;崔爱峰. 新合纤织物表面手感及摩擦性能的研究[J]. 纺织学报, 2002, 23(02): 23-25.
Viewed
Full text
24
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 8 0 0 16

  From Others local
  Times 14 10
  Rate 58% 42%

Abstract
65
Just accepted Online first Issue
0 0 65
  From Others local
  Times 48 17
  Rate 74% 26%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!