纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 159-165.doi: 10.13475/j.fzxb.20240501901

• 染整工程 • 上一篇    下一篇

MoS2/MXene阻燃气敏棉织物的制备及其性能

关玉, 王冬, 郭一凡, 付少海()   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2024-05-10 修回日期:2024-08-21 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 付少海(1972—),男,教授,博士。主要研究方向为生态染整技术和功能纤维材料。E-mail: shaohaifu@hotmail.com
  • 作者简介:关玉(1990—),女,助理研究员。主要研究方向为功能纤维。
  • 基金资助:
    江苏省基础研究计划自然科学基金青年基金项目(BK20221093);湖北省纺织新材料及其应用重点实验室开放课题(FZXCL202202)

Preparation and properties of MoS2/MXene flame retardant gas sensitive cotton fabrics

GUAN Yu, WANG Dong, GUO Yifang, FU Shaohai()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2024-05-10 Revised:2024-08-21 Published:2024-12-15 Online:2024-12-31

摘要:

针对易燃棉织物引发的室内火灾难以及时预警的难题,以植酸为掺杂剂,通过原位聚合法制备植酸掺杂聚吡咯改性棉织物,同时采用水热法合成MoS2/Ti3C2Tx杂化纳米材料(MoS2/MXene),然后通过浸渍法将其组装到改性织物上,得到CO2响应的阻燃棉织物,研究其热稳定性、阻燃性能和CO2气敏性,揭示阻燃与气敏机制。结果表明:MoS2/MXene阻燃涂层使得棉织物的最大质量损失速率降低了55.2%,残炭量从9.6%明显提高到21.7%,提高了棉织物的热稳定性;MoS2/MXene阻燃涂层使得棉织物的热释放速率峰值和总热释放从235.8 W/g和26.7 kJ/g分别降低到38.9 W/g和8.0 kJ/g,降幅分别高达83.5%和68.7%,这得益于植酸掺杂聚吡咯的P-N协同阻燃效应与MoS2/MXene的片层阻隔效应;MoS2/MXene阻燃涂层对CO2气体具有很高的灵敏度,当CO2质量浓度仅为180 mg/m3时,电阻变化率高达49.9%,可监测火灾初起阶段燃烧气体中CO2骤变。

关键词: 二硫化钼, MXene, 异质结构, 阻燃预警, 气敏机制, 阻燃织物, 功能性纺织品

Abstract:

Objective To address the issue of indoor fire alarms caused by flammable cotton fabrics, MoS2/MXene flame retardant gas sensitive cotton fabrics were prepared with dual functions of active early warning response and passive flame retardant protection. It is significant for protecting personal and property safety by detecting characteristic CO2 gas in the early stages of a fire and preventing the spread of flames.

Method Phytic acid-doped polypyrrole modified cotton fabrics were prepared using in-situ polymerization with phytic acid as dopant. Meanwhile, MoS2/MXene hybrid nanomaterials were synthesized via a hydrothermal method and then assembled onto the modified fabrics by impregnation method to obtain CO2-responsive flame retardant cotton fabrics. The thermal stability, flame retardant performance and CO2 gas sensitivity were evaluated by thermogravimetric analysis, an FTT micro calorimeter and a digit multimeter, respectively.

Results MoS2/MXene flame retardant gas sensitive cotton fabrics were successfully prepared. The surface of the pure cotton fabric was initially smooth, but after modification with phytic acid-doped polypyrrole, it became rough and covered with numerous particles. This change is due to the in-situ synthesis of the doped polypyrrole particles adhering to the cotton fabric. After dipping, the surface of flame-retardant cotton fabric became even rougher with regular folds, indicating successful adsorption of the MoS2/MXene nano-hybrid material. The MoS2/MXene flame retardant coating reduced the maximum weight loss rate of cotton fabric by 55.2% and increased the residual carbon content from 9.6% to 21.7%, enhancing thermal stability. Additionally, the coating decreased the peak heat release rate and total heat release by 83.5% and 68.7%, respectively, from 235.8 W/g and 26.7 kJ/g to 38.9 W/g and 8.0 kJ/g. This improvement is attributed to the P-N synergistic flame retardant effect of the doped polypyrrole and the barrier effect of MoS2/MXene. The fabrics also exhibited high sensitivity to CO2 gas, with a significantly higher resistance change rate compared to fabrics treated only with MoS2 or MXene. At a CO2 concentration of 180 mg/m3, the resistance change rate was as high as 49.9%, allowing for early detection of CO2 changes during the initial stages of a fire. The presence of P-N heterojunctions in the MoS2/MXene flame retardant gas sensitive cotton fabrics increased the concentration and migration rate of carriers in the channel, thereby enhancing the sensitivity of MoS2/MXene flame retardant gas sensitive cotton fabrics to CO2 gas. In addition, MoS2/MXene flame retardant gas sensitive cotton fabrics provide more adsorption sites for CO2 gas, further improving the sensitivity.

Conclusion MoS2/MXene flame retardant gas sensitive cotton fabrics were successfully synthesized, demonstrating dual functionality of active early warning response and passive flame retardant protection. Compared to pure cotton fabrics, the MoS2/MXene flame retardant gas sensitive cotton fabrics show significant improved flame retardant efficiency, with an 83.5% reduction in the peak heat release rate and a 68.7% reduction in total heat release. This performance is mainly due to the P-N synergistic flame retardant effect of phytate-doped polypyrrole and the barrier effect of MoS2/MXene. In addition, MoS2/MXene flame retardant gas sensitive cotton fabrics exhibit high sensitivity to CO2gas, capable of monitoring sudden change of CO2 at the initial stage of a fire. This study shines a new light on fire prevention and control.

Key words: MoS2, MXene, heterogeneous structure, flame retardant early warning, gas-sensitive mechanism, flame retardant fabric, functional textiles

中图分类号: 

  • TS194.6

图1

MoS2和MoS2/MXene纳米杂化材料SEM 照片(×30 000)"

图2

MoS2/MXene纳米杂化材料的XRD图谱和拉曼图谱"

图3

织物表面SEM照片(×2 000)"

图4

MoS2/MXene阻燃气敏棉织物的热重曲线"

表1

MoS2/MXene阻燃气敏棉织物的TG和DTG关键数据"

样品 Td/℃ Tmax/℃ Rmax/
(%·min-1)
残炭
量/%
原棉织物 277.5 370.2 1.844 9.6
MoS2/MXene阻
燃气敏棉织物
207.9 323.9 0.826 21.7

图5

MoS2/MXene阻燃气敏棉织物的阻燃性能"

图6

棉织物燃烧后炭渣的SEM照片(×2 000)"

图7

棉织物燃烧后炭渣的拉曼谱图"

图8

MoS2/MXene阻燃气敏棉织物的电阻变化率"

[1] HASOFER A M, THOMAS I. Analysis of fatalities and injuries in building fire statistics[J]. Fire Safety Journal, 2006, 41(1): 2-14.
[2] 王永强. 阻燃材料及应用技术[M]. 北京: 化学工业出版社, 2003:680.
WANG Yongqiang. Flame retardant materials and application technology[M]. Beijing: Chemical Industry Press,2003:680.
[3] LI P, WANG B, XU Y J, et al. Ecofriendly flame-retardant cotton fabrics: preparation, flame retardancy, thermal degradation properties, and mechanism[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19246-192564.
[4] QI P, CHEN F, LI Y, et al. A review of durable flame-retardant fabrics by finishing: fabrication strategies and challenges[J]. Advanced Fiber Materials, 2023, 5(3): 1-33.
[5] WANG X, LEI Z, MA X, et al. A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, shielding, and electrothermal/photothermal conversion for wearable heater[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.132605.
[6] ZHU T, LIU L, HUANG J, et al. Multifunctional hydrophobic fabric-based strain sensor for human motion detection and personal thermal management[J]. Journal of Materials Science & Technology, 2023, 138: 108-116.
[7] ZHAO X, PENG L M, TANG C Y, et al. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels[J]. Materials Horizons, 2020, 7(3): 855-865.
[8] ULLAH S, SHAHZAD F, QIU B, et al. MXene-based aptasensors: advances, challenges, and prospects[J]. Progress in Materials Science, 2022.DOI:10.1016/j.pmatsci.2022.100967.
[9] PEI Y, ZHANG X, HUI Z, et al. Ti3C2Tx MXene for sensing applications: recent progress, design principles, and future perspectives[J]. ACS Nano, 2021, 15(3): 3996-4017.
[10] WANG Z, GAO S, FEI T, et al. Construction of ZnO/SnO2heterostructure on reduced graphene oxide for enhanced nitrogen dioxide sensitive performances at room temperature[J]. ACS Sensors, 2019, 4(8): 2048-2057.
[11] AHMAD I. 几种二维半导体及其异质结的光电特性及光催化应用的理论研究[D]. 昆明: 昆明理工大学, 2023:151.
AHMAD I. Theoretical study on the optoelectronic characteristics of several two-dimensional semiconductors and their heterojunctions and their photocatalytic applications[D]. Kunming: Kunming University of Science and Technology, 2023:151.
[12] SAVENIJE T J, KROEZE J E, YANG X, et al. The effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene-fullerene bulk heterojunction[J]. Advanced Functional Materials, 2005, 15(8): 1260-1266.
[13] YAN S H, MA S Y, XU X L, et al. Synthesis and gas sensing application of porous CeO2-ZnO hollow fibers using cotton as biotemplates[J]. Materials Letters, 2016, 165: 9-13.
[14] RAMASAMY F. A review on the investigation of biologically active natural compounds on cotton fabrics as an antibacterial textile finishing[J]. International Research Journal of Science and Technology, 2019, 1(1): 49-55.
[15] BNETIS A, BOUKHRISS A, GRANCARIC A M, et al. Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions[J]. Cellulose, 2019, 26: 2139-2153.
[16] 吕宝华, 李玉珍. 水热法制备In2O3/ZnO异质结及其高的光催化性能[J]. 原子与分子物理学报, 2022, 39 (6): 56-62.
LÜ Baohua, LI Yuzhen. Preparation of In2O3/ZnO heterojunctions by hydrothermal method and its high photocatalytic Performance[J]. Atomic and Molecular physics Journal, 2022, 39(6):56-62.
[1] 黄田田, 宋媛珠, 赵斌. 单宁酸基阻燃多功能涂层及表面整理Lyocell织物[J]. 纺织学报, 2024, 45(12): 152-158.
[2] 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128.
[3] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[4] 吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34.
[5] 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149.
[6] 王皓月, 胡亚宁, 赵健, 杨鹏. 基于蛋白质类淀粉样聚集的纤维表面功能化[J]. 纺织学报, 2024, 45(08): 1-9.
[7] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[8] 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226.
[9] 程献伟, 刘亚文, 关晋平, 陈瑞. 生物质植酸改性聚氨酯涂层锦纶6织物的制备及其阻燃性能[J]. 纺织学报, 2024, 45(06): 120-126.
[10] 马逸平, 樊武厚, 胡晓, 王斌, 李林华, 梁娟, 吴晋川, 廖正科. 耐久型水性杂化无氟防水剂的制备及其性能[J]. 纺织学报, 2024, 45(06): 113-119.
[11] 李倩倩, 郭晓玲, 崔文豪, 许宇真, 王林峰. 汽车座椅用抗菌涤纶针织物制备及其性能[J]. 纺织学报, 2024, 45(06): 127-133.
[12] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[13] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
[14] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[15] 王晓萌, 李婷婷, 许炳铨, 林佳弘, 楼静文. 耐用多功能光热阻燃织物的制备及应用[J]. 纺织学报, 2024, 45(04): 120-125.
Viewed
Full text
17
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 1 0 0 16

  From Others local
  Times 6 11
  Rate 35% 65%

Abstract
68
Just accepted Online first Issue
0 0 68
  From Others local
  Times 55 13
  Rate 81% 19%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!