纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 106-112.doi: 10.13475/j.fzxb.20240505101

• 纺织工程 • 上一篇    下一篇

基于静电纺纤维包芯纱的电容式扭转传感器构建及其传感性能

范梦晶1, 岳欣琰1, 邵剑波1, 陈雨1, 洪剑寒1,2,3(), 韩潇1,2,3   

  1. 1.绍兴文理学院 纺织科学与工程学院, 浙江 绍兴 312000
    2.浙江省清洁染整技术研究重点实验室,浙江 绍兴 312000
    3.绍兴文理学院 纤维基复合材料国家工程研究中心绍兴分中心, 浙江 绍兴 312000
  • 收稿日期:2024-05-22 修回日期:2024-10-17 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 洪剑寒(1982—),男,教授,博士。主要研究方向为新型纺织材料的制备与应用。E-mail:jhhong@usx.edu.cn
  • 作者简介:范梦晶(1998—),女,硕士生。主要研究方向为智能服装柔性器件的设计开发与应用。
  • 基金资助:
    浙江省自然科学基金探索公益项目(LTGY24E030001);国家级大学生创新创业训练计划项目(202310349025)

Construction and sensing performance of capacitive torsion sensor made from electrospinning fiber core-spun yarn

FAN Mengjing1, YUE Xinyan1, SHAO Jianbo1, CHEN Yu1, HONG Jianhan1,2,3(), HAN Xiao1,2,3   

  1. 1. School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
    3. Shaoxing Sub-Center of National Engineering Research Center for Fiber-Based Composites, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2024-05-22 Revised:2024-10-17 Published:2025-02-15 Online:2025-03-04

摘要:

为拓展柔性传感器的研发思路,开发出高质量的柔性电容式扭转器件,采用水浴静电纺丝法制备以镀银锦纶(SCN)为芯纱,聚丙烯腈(PAN)为包覆层的静电纺纤维包芯纱(EFCY),利用EFCY构建电容式扭转传感器,分析了纱线的性能,探讨了扭转传感器的传感原理与性能。结果表明:静电纺纤维在SCN芯纱表面包覆完整且均匀,直径分布较为均匀,结构疏松多孔,力学性能较芯纱有所提升;扭转传感器的电容值随着捻度的增大而增大,极限捻度可达13 捻/cm左右;速度变化会使传感器电容稍有变化但影响不显著;在加捻—解捻—反向加捻—解捻循环测试中,传感器显示出较优异的重复稳定性。该传感器在扭转监测用柔性电子领域初步具备优良的应用条件。

关键词: 静电纺丝, 静电纺纤维包芯纱, 电容, 扭转传感器, 传感性能

Abstract:

Objective With the rapid development of micro-electromechanical systems, torsion sensor has been widely used for effectively monitoring mechanical behavior in complex environments. The current torsion sensor is not satisfactory because of its rigidity, structural complexity and high price. Therefore, in order to meet different requirements and further expand its application space, a capacitive torsion sensor based on electrospinning fiber core-spun yarn (EFCY) with excellent flexibility and transduction properties was proposed.

Method A four-needle water bath electrospinning method was used to prepare the EFCY with silver coated nylon (SCN) as the core, and polyacrylonitrile (PAN) electrospinning fiber as the sheath. The EFCY was prepared using the following electrospinning conditions: the mass fraction of the spinning solution was 12%, the spinning rate was 0.36 mL/h, the voltage was 18 kV, the drawing distance was 100 mm, the winding rate was 33 cm/min, and 4 needles were arranged in a straight line above the core yarn. The performance of the EFCY was analyzed, and a capacitive torsion sensors was constructed by using two EFCYs (Sensor 1# with the initial distance between the two EFCYs was 0 mm and Sensor 2# with the initial distance between the two EFCYs was 4 mm) with the SCN as electrode and. The effects of the initial distance and twisting speed on the capacitance of the sensors were discussed, and its repeatability was tested.

Results The coating layer of EFCY was complete in structure and uniform in thickness (about 21.4 μm). The average diameter of the electrospinning PAN fibers was about 249.60 nm. Compared with SCN, the mechanical properties of EFCY were improved to some extent. The torsion sensor shows good sensing performance. When the initial distance between the two EFCYs in the sensor increases from 0 mm (Sensor 1#) to 4 mm (Sensor 2#), the initial capacitance of the sensor decreases from 7.28 pF to 2.63 pF. With the increase of twist, the capacitance of the two sensors showed a trend of gradual increase. When the twist of the two sensors exceeds 4 twist/cm, the capacitance changes tend to be consistent. When the twist reached 13-14 twist/cm, the electrospinning fiber coating layer would be destroyed under the action of extrusion pressure and friction, thus damaging the sensor structure and making it ineffective. In the range of 60-160 r/min, continuous twist-untwist-reverse twist-untwist cycle tests were carried out on the sensor at 6 different speeds. The results showed that the maximum value of Cp/C0(real-time capacitance/initial capacitance) increased significantly after 2-3 cycles at the speed of 60 r/min, showing initial instability. Subsequently, under different speeds, the maximum value of Cp/C0 is basically stable at about 3.4, which is almost not affected by the increase of speed. A cycle test of about 7 000 s at a speed of 160 r/min and a maximum twist of 5 twist /cm showed that the sensor maintained high sensing stability after the first few cycles.

Conclusion EFCY with SCN as core yarn and PAN electrospinning fiber as coating layer was prepared by four-needle water bath electrospinning method, and the capacitive torsion sensor was constructed based on EFCYs. The properties of yarn are analyzed, and the sensing principle and properties of torsion sensor are discussed. The results show that the surface of SCN core yarn is covered by electrospinning fiber coating layer completely and uniformly, which can provide an ideal dielectric layer for the sensor. The capacitance value of torsion sensor increases with the increase of twist, and the limit twist can reach about 13 twist /cm. Under different test conditions, the sensor shows excellent repeatability. The sensor has an excellent application prospect in the field of flexible electronics for torsion monitoring.

Key words: electrospinning, electrospinning fiber cored yarn, capacitance, torsion sensor, sensing performance

中图分类号: 

  • TS101.922

图1

四针头水浴静电纺丝装置示意图和针头排列方式"

图2

自制扭转传感器传感性能测试装置示意图"

图3

EFCY的截面和表面形态照片"

图4

静电纺纤维直径分布"

图5

纱线包覆前后的位移-载荷曲线"

表1

纱线包覆前后的力学性能"

纱线 断裂强力/N 断裂强度/(cN·dtex-1) 断裂伸长率/%
SCN芯纱 8.87±0.24 3.35±0.09 58.62±5.59
EFCY 9.13±0.16 2.43±0.04 78.32±4.33

图6

传感器捻度对电容的影响"

图7

加捻过程中传感器的结构变化及其示意图"

图8

破损的静电纺纤维包覆层"

图9

传感器在加捻—解捻—反向加捻—解捻过程中的相对电容变化"

图10

加捻速度对传感器相对电容的影响"

图11

加捻—解捻循环电容变化曲线"

[1] JIANG P, XU M, LI L, et al. Highly sensitive torsion sensor based on helical eccentric dual-core fiber Michelson interferometer[J]. Optical Fiber Technology, 2024. DOI:10.1016/j.yofte.2023.103628.
[2] TANG Q, RUAN J, ZUO X, et al. All-fiber in-line twist sensor based on a capillary optical fiber[J]. Photonics, 2023, 10(9):1052.
[3] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553):467-475.
[4] HAINES C S, LIMA M D, LI N, et al. Artificial muscles from fishing line and sewing thread[J]. Science, 2014, 343(6173): 868-872.
doi: 10.1126/science.1246906 pmid: 24558156
[5] WEI H, TING H Z J, GONG Y, et al. Torsional properties of bundles with randomly packed carbon nanotubes[J]. Nanomaterials, 2022, 12(5): 760-778.
[6] MA X, CHIU P W Y, LI Z. Real-time deformation sensing for flexible manipulators with bending and twisting[J]. IEEE Sensors Journal, 2018, 18(15): 6412-6422.
[7] RUDERMAN M. On stability of virtual torsion sensor for control of flexible robotic joints with hysteresis[J]. Robotica, 2019, 38(7):1-14.
[8] 刘玉慧, 柳仕林, 吴聪影, 等. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38 (4): 224-232.
LIU Yuhui, LIU Shilin, WU Congying, et al. Research progress of multi-demensional flexible strain/pressure sensors based on carbon materials[J]. Materials Reports, 2024, 38 (4): 224-232.
[9] CHOI C, LEE J M, KIM S H, et al. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors[J]. Nano Letters, 2016, 16(12): 7677-7684.
pmid: 27960462
[10] CHOI S, MOON S H, KIM T K, et al. Fabrication of capacitive yarn torsion sensors based on an electrospinning coating method[J]. Polymer International, 2019, 68(11): 1921-1927.
[11] COOPER C B, ARUSTSELVAN K, LIU Y, et al. Stretchable capacitive sensors of torsion, strain, and touch using double liquid metal fibers[J]. Advanced Functional Materials, 2017, 27(20): 1-8.
[12] FAN M J, YUE X Y, WANG X H, et al. Electric field simulation of multi-needle water bath electrospinning and structural properties of SCN/PAN micro-nano fiber composite yarns[J]. Nanotechnology, 2023. DOI:10.1088/1361-6528/acf3ef.
[13] CHINNAPPAN A, BASKAR C, BASKAR S. An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics[J]. Journal of Materials Chemistry C, 2017, 5(48): 12657-12673.
[14] SANTOS J P F, DASILVA A B, ARJMAND M, et al. Nanofibers of poly(vinylidene fluoride)/copper nanowire: microstructural analysis and dielectric behavior[J]. European Polymer Journal, 2018, 101: 46-55.
[1] 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19.
[2] 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25.
[3] 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8.
[4] 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51.
[5] 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8.
[6] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[7] 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32.
[8] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[9] 周奉凯, 李沂蒙, 彭佳敏, 毛吉富, 王璐. 用于增强海水淡化性能的聚吡咯功能化废旧织物[J]. 纺织学报, 2024, 45(11): 153-161.
[10] 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45.
[11] 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234.
[12] 史雅楠, 马颜雪, 樊平, 薛文良, 李毓陵. 织边结构弹性传感机织带的制备及其传感性能影响因素[J]. 纺织学报, 2024, 45(11): 114-120.
[13] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
[14] 刘健, 王程皓, 董守骏, 刘泳汝. 半封闭自由表面式静电纺丝喷头设计与优化[J]. 纺织学报, 2024, 45(11): 215-225.
[15] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
Viewed
Full text
14
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 4 0 0 10

  From Others local
  Times 5 9
  Rate 36% 64%

Abstract
42
Just accepted Online first Issue
0 0 42
  From Others local
  Times 34 8
  Rate 81% 19%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!