纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 35-42.doi: 10.13475/j.fzxb.20240704001

• 纤维材料 • 上一篇    下一篇

基于聚偏氟乙烯/聚多巴胺/UiO-66纳米纤维的复合质子交换膜制备及其性能

张鑫伟1,2, 李港华1,2, 李林蔚1,2, 刘红1,2, 田明伟1,2, 王航1,2()   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛市健康与防护智能纺织工程研究中心, 山东 青岛 266071
  • 收稿日期:2024-07-15 修回日期:2024-11-03 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 王航(1990—),男,副教授,博士。主要研究方向为纳米纤维新材料与质子交换膜材料、智能纺织品的机制研究及产品应用。E-mail:wanghang@qdu.edu.cn
  • 作者简介:张鑫伟(2000—),男,硕士生。主要研究方向为纳米纤维新材料与质子交换膜材料。
  • 基金资助:
    国家自然科学基金项目(22208178);山东省青创科技创新团队项目(2023KJ223);泰山学者工程专项经费资助项目(tsqn202211116);山东省科技型中小企业创新能力提升工程项目(2023TSGC0344);山东省科技型中小企业创新能力提升工程项目(2023TSGC1006);宿迁市重点研发计划项目(H202310)

Preparation and properties of composite proton-exchange membrane based on polyvinylidene fluoride/polydopamine/UiO-66 nanofibers

ZHANG Xinwei1,2, LI Ganghua1,2, LI Linwei1,2, LIU Hong1,2, TIAN Mingwei1,2, WANG Hang1,2()   

  1. 1. College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Qingdao Health and Protection intelligent Textile Engineering Research Center, Qingdao, Shandong 266071, China
  • Received:2024-07-15 Revised:2024-11-03 Published:2025-02-15 Online:2025-03-04

摘要:

针对质子交换膜内高效质子传输通道构筑难题,提出了多尺度微相界面结构与多功能酸-碱离子域协同构筑策略,采用聚多巴胺(PDA)修饰和锆1,4-氨基苯金属有机骨架(UiO-66)原位生长方法制备聚偏氟乙烯(PVDF)/PDA/UiO-66纳米纤维,后经磺化聚砜溶液(SPSF)浸渍制得致密的复合质子交换膜,并对PVDF/PDA/UiO-66纳米纤维对质子交换膜微观结构、吸水性能、尺寸稳定性能、质子传导性能、甲醇渗透系数等的影响规律进行了研究。结果表明:多尺度微观纳米纤维结构显著增加了微相界面作用区域并通过酸-碱离子作用有效调控膜内质子传输位点,提升了复合质子交换膜综合性能;所制备的质子交换膜吸水率增加到55.56%,溶胀性被限制在18.32%;复合膜的质子电导率达到了0.165 S/cm,相对于SPSF膜提升了100.97%;甲醇渗透系数显著降低,甲醇渗透率低至2.139×10-7 cm2/s,选择性相比SPSF膜提高了11倍。基于原位生长金属有机骨架纳米纤维的多尺度微相界面结构与多功能酸-碱离子域协同构筑策略,可从结构与功能角度有效协同提升质子交换膜综合性能,助推下一代新型纳米纤维复合质子交换膜发展。

关键词: 纳米纤维, 质子交换膜, 质子传导通道, 直接甲醇燃料电池, 金属有机骨架化合物

Abstract:

Objective Proton-exchange membrane (PEM) as a key component of fuel cells represent an important area of research that drives the rapid development of new energy technologies. The exchange of protons depends on the proton carriers and pathways within the membrane, making the optimization of these two structures crucial for achieving efficient proton transport. Current research primarily focuses on simple functional structures of metal-organic frameworks (MOF) and nanofibers, with slow improvements in proton conductivity. To tackle the challenges associated with proton transport in PEMs, a strategy has been put forth that involves the creation of a multi-scale micro-phase interface structure and multifunctional acid-base ion domains. The multi-scale architecture of the MOF composite nanofibers (physical microenvironment) and the functional ion domains situated between the MOF, fiber matrix, and polymer matrix (chemical microenvironment) markedly influence the performance of the proton exchange membrane. The study also investigates the synergistic effects of these physicochemical structures on proton transport.

Method Polyvinylidene fluoride (PVDF) nanofibers were prepared using electrospinning technology. Following this, the nanofibers were subjected to a polydopamine (PDA) chemical treatment within a buffer solution, succeeded by the in situ growth of a metal-organic framework (MOF) under conditions of high temperature and pressure. This process yielded nanofibers featuring a multi-scale micro-phase interface structure and multifunctional acid-base ion domains. Finally, a dense composite proton exchange membrane was fabricated using a sulfonated polyphenylsulfone (SPSF) solution through a compatible immersion method.

Results The results of EDS mapping showed that PDA was chemically bonded onto the nanofibers. Scanning electron microscopy images clearly revealed the presence of MOF particles, indicating good results from the in-situ growth treatment. Performance tests of the composite membrane demonstrated that the multi-scale micro-nanofiber structure significantly increased the interfacial interaction area of the micro-phases and effectively modulated the proton transport sites within the membrane through acid-base ion interactions, thereby enhancing the overall performance of the composite proton exchange membrane. The prepared proton exchange membrane exhibited an improved water uptake of 55.56%, with swelling limit of 18.32%. The proton conductivity of the composite membrane reached 0.165 S/cm, representing an increase of 100.97% compared to the SPSF membrane. The methanol permeability coefficient was significantly reduced with as low as 2.139 × 10-7 cm2/s of methanol permeability, achieving an 11-fold increase in selectivity compared to the SPSF membrane.

Conclusion The multi-scale microphase interface structure based on in-situ growth of MOF nanofibers and the synergistic construction strategy of multifunctional acid alkali ion domains is proven to effectively enhance the comprehensive performance of proton exchange membranes from both structural and functional perspectives, and promote the development of the next generation of novel nanofiber composite proton exchange membranes.

Key words: nanofiber, proton exchange membrane, proton conduction channel, direct methanol fuel cell, metal organic framework

中图分类号: 

  • TS1

图1

多尺度微相结构、酸-碱离子域与质子传输路径示意图"

图2

PVDF纳米纤维微观图像和直径分布图"

图3

PVDF/PDA的微观照片和EDS映射图像"

图4

PVDF/PDA/UiO-66的微观图像照片和元素分析"

图5

纳米纤维的成分分析与表征"

图6

复合膜的微观形貌和结构表征"

表1

室温下复合膜的甲醇渗透率和选择性"

样品 甲醇渗透率/
(10-7 cm2·s-1)
选择透过性/
(104 S·s·cm-3)
SPSF/NF-10 8.755 2.658
SPSF/NF-20 6.122 4.245
SPSF/NF-30 2.139 17.592
SPSF 7.540 1.592

图7

SPSF/NFs和SPSF膜的性能"

[1] CHEN Bo Han, CHANG Min Hsing, LIAO Chung Yu. Fabrication of bimetallic PtPd nanowire electrocatalysts by centrifugal electrospinning method for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2022, 47: 37531-37541.
[2] 高倩, 程丹, 段曼华, 等. 燃料电池用高性能质子交换膜研究进展[J]. 石油化工高等学校学报, 2024, 37(4):66-75.
GAO Qian, CHENG Dan, DUAN Manhua, et al. Progress of high performance proton exchange membranes for fuel cells[J]. Journal of Petrochemical Universities, 2024, 37(4): 66-75.
[3] PHACHAIPUM Sanhaporn, PRAPAINAINAR Chaiwat, PRAPAINAINAR Paweena. Proton-exchange polymer composite membrane of Nafion and microcrystalline cellulose for performance improvement of direct glycerol fuel cell[J]. International Journal of Hydrogen Energy, 2024, 52: 1111-1120.
[4] SHARMA Prem P, YADAV Vikrant, GAHLOT Swati, et al. Acid resistant PVDF-co-HFP based copolymer proton exchange membrane for electro-chemical application[J]. Journal of Membrane Science, 2019, 573: 485-492.
[5] WANG Shubo, LIN Yuan, YANG Jian, et al. UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membr-ane[J]. International Journal of Hydrogen Energy, 2021, 46: 19106-19115.
[6] ZHANG Jinghan, LIU Hao, MA Yuxuan, et al. Construction of dual-interface proton channels based on γ-polyglutamic acid@cellulose whisker/PVDF nanofibers for proton exchange membranes[J]. Journal of Power Sources, 2022. DOI: 10.1016/j.jpowsour.2022.231981.
[7] WANG Liyuan, DENG Nanping, LIANG Yueyao, et al. Metal-organic framework anchored sulfonated poly(ether sulfone) nanofibers as highly conductive channels for hybrid proton exchange membranes[J]. Journal of Power Sources, 2020. DOI: 10.1016/j.jpowsour.2019.227592.
[8] ZHU Bensheng, SUI Yang, WEI Peng, et al. NH2-UiO-66 coated fibers to balance the excellent proton conduction efficiency and significant dimensional stability of proton exchange membrane[J]. Journal of Membrane Science, 2021. DOI: 10.1016/j.jpowsour.2019.227592.
[9] GERAVAND Elham, FARZANEH Faezeh, GHIASI Mina. Metalation and DFT studies of metal organic frameworks UiO-66(Zr) with vanadium chloride as allyl alcohol epoxidation catalyst[J]. Journal of Molecular Structure, 2019. DOI: 10.1016/j.molstruc.2019.126940.
[10] WANG Meng, WANG Liyuan, DENG Nanping, et al. Electrospun multi-scale nanofiber network: hierarchical proton-conducting channels in Nafion composite proton exchange membranes[J]. Cellulose, 2021, 28: 6567-6585.
[11] ZHAO Guodong, ZHAO Huijuan, ZHUANG Xupin, et al. Nanofiber hybrid membranes: progress and application in proton exchange membranes[J]. Journal of Materials Chemistry A, 2021, 9: 3729-3766.
[12] ESKITOROS-TOGAY Ş Melda, BULBUL Y Emre, CıNAR Zeynep Kubra, et al. Fabrication of PVP/sulfonated PES electrospun membranes decorated by sulfonated halloysite nanotubes via electrospinning method and enhanced performance of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48: 280-290.
[13] KIM Ae Rhan, PARK Chul Jin, VINOTHKANNAN Mohanraj, et al. Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells[J]. Composites Part B(Engineering), 2018, 155: 272-281.
[14] CAI Zhanjun, LI Rui, XU Xianlin, et al. Embedding phosphoric acid-doped cellulose nanofibers into sulfonated poly (ether sulfone) for proton exchange membrane[J]. Polymer, 2018, 156: 179-185.
[15] SAHIN Alpay. The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells[J]. Electrochimica Acta, 2018, 271: 127-136.
[1] 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19.
[2] 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8.
[3] 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8.
[4] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[5] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[6] 王子傲, 黄朋, 程盼, 刘轲, 向阳, 周丰, 高飞, 王栋. 梯度结构纳米纤维膜的制备及其对啤酒除菌过滤性能[J]. 纺织学报, 2024, 45(11): 29-36.
[7] 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234.
[8] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
[9] 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207.
[10] 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9.
[11] 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25.
[12] 蔺志浩, 房磊, 贾娇娇, 扈延龄, 房宽峻. 负载生长因子的微纳米纤维创面敷料的制备与应用研究进展[J]. 纺织学报, 2024, 45(09): 244-251.
[13] 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41.
[14] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[15] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
Viewed
Full text
20
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 5 0 0 15

  From Others local
  Times 7 13
  Rate 35% 65%

Abstract
65
Just accepted Online first Issue
0 0 65
  From Others local
  Times 43 22
  Rate 66% 34%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!