纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 35-42.doi: 10.13475/j.fzxb.20240704001
张鑫伟1,2, 李港华1,2, 李林蔚1,2, 刘红1,2, 田明伟1,2, 王航1,2()
ZHANG Xinwei1,2, LI Ganghua1,2, LI Linwei1,2, LIU Hong1,2, TIAN Mingwei1,2, WANG Hang1,2()
摘要:
针对质子交换膜内高效质子传输通道构筑难题,提出了多尺度微相界面结构与多功能酸-碱离子域协同构筑策略,采用聚多巴胺(PDA)修饰和锆1,4-氨基苯金属有机骨架(UiO-66)原位生长方法制备聚偏氟乙烯(PVDF)/PDA/UiO-66纳米纤维,后经磺化聚砜溶液(SPSF)浸渍制得致密的复合质子交换膜,并对PVDF/PDA/UiO-66纳米纤维对质子交换膜微观结构、吸水性能、尺寸稳定性能、质子传导性能、甲醇渗透系数等的影响规律进行了研究。结果表明:多尺度微观纳米纤维结构显著增加了微相界面作用区域并通过酸-碱离子作用有效调控膜内质子传输位点,提升了复合质子交换膜综合性能;所制备的质子交换膜吸水率增加到55.56%,溶胀性被限制在18.32%;复合膜的质子电导率达到了0.165 S/cm,相对于SPSF膜提升了100.97%;甲醇渗透系数显著降低,甲醇渗透率低至2.139×10-7 cm2/s,选择性相比SPSF膜提高了11倍。基于原位生长金属有机骨架纳米纤维的多尺度微相界面结构与多功能酸-碱离子域协同构筑策略,可从结构与功能角度有效协同提升质子交换膜综合性能,助推下一代新型纳米纤维复合质子交换膜发展。
中图分类号:
[1] | CHEN Bo Han, CHANG Min Hsing, LIAO Chung Yu. Fabrication of bimetallic PtPd nanowire electrocatalysts by centrifugal electrospinning method for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2022, 47: 37531-37541. |
[2] | 高倩, 程丹, 段曼华, 等. 燃料电池用高性能质子交换膜研究进展[J]. 石油化工高等学校学报, 2024, 37(4):66-75. |
GAO Qian, CHENG Dan, DUAN Manhua, et al. Progress of high performance proton exchange membranes for fuel cells[J]. Journal of Petrochemical Universities, 2024, 37(4): 66-75. | |
[3] | PHACHAIPUM Sanhaporn, PRAPAINAINAR Chaiwat, PRAPAINAINAR Paweena. Proton-exchange polymer composite membrane of Nafion and microcrystalline cellulose for performance improvement of direct glycerol fuel cell[J]. International Journal of Hydrogen Energy, 2024, 52: 1111-1120. |
[4] | SHARMA Prem P, YADAV Vikrant, GAHLOT Swati, et al. Acid resistant PVDF-co-HFP based copolymer proton exchange membrane for electro-chemical application[J]. Journal of Membrane Science, 2019, 573: 485-492. |
[5] | WANG Shubo, LIN Yuan, YANG Jian, et al. UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membr-ane[J]. International Journal of Hydrogen Energy, 2021, 46: 19106-19115. |
[6] | ZHANG Jinghan, LIU Hao, MA Yuxuan, et al. Construction of dual-interface proton channels based on γ-polyglutamic acid@cellulose whisker/PVDF nanofibers for proton exchange membranes[J]. Journal of Power Sources, 2022. DOI: 10.1016/j.jpowsour.2022.231981. |
[7] | WANG Liyuan, DENG Nanping, LIANG Yueyao, et al. Metal-organic framework anchored sulfonated poly(ether sulfone) nanofibers as highly conductive channels for hybrid proton exchange membranes[J]. Journal of Power Sources, 2020. DOI: 10.1016/j.jpowsour.2019.227592. |
[8] | ZHU Bensheng, SUI Yang, WEI Peng, et al. NH2-UiO-66 coated fibers to balance the excellent proton conduction efficiency and significant dimensional stability of proton exchange membrane[J]. Journal of Membrane Science, 2021. DOI: 10.1016/j.jpowsour.2019.227592. |
[9] | GERAVAND Elham, FARZANEH Faezeh, GHIASI Mina. Metalation and DFT studies of metal organic frameworks UiO-66(Zr) with vanadium chloride as allyl alcohol epoxidation catalyst[J]. Journal of Molecular Structure, 2019. DOI: 10.1016/j.molstruc.2019.126940. |
[10] | WANG Meng, WANG Liyuan, DENG Nanping, et al. Electrospun multi-scale nanofiber network: hierarchical proton-conducting channels in Nafion composite proton exchange membranes[J]. Cellulose, 2021, 28: 6567-6585. |
[11] | ZHAO Guodong, ZHAO Huijuan, ZHUANG Xupin, et al. Nanofiber hybrid membranes: progress and application in proton exchange membranes[J]. Journal of Materials Chemistry A, 2021, 9: 3729-3766. |
[12] | ESKITOROS-TOGAY Ş Melda, BULBUL Y Emre, CıNAR Zeynep Kubra, et al. Fabrication of PVP/sulfonated PES electrospun membranes decorated by sulfonated halloysite nanotubes via electrospinning method and enhanced performance of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48: 280-290. |
[13] | KIM Ae Rhan, PARK Chul Jin, VINOTHKANNAN Mohanraj, et al. Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells[J]. Composites Part B(Engineering), 2018, 155: 272-281. |
[14] | CAI Zhanjun, LI Rui, XU Xianlin, et al. Embedding phosphoric acid-doped cellulose nanofibers into sulfonated poly (ether sulfone) for proton exchange membrane[J]. Polymer, 2018, 156: 179-185. |
[15] | SAHIN Alpay. The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells[J]. Electrochimica Acta, 2018, 271: 127-136. |
[1] | 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19. |
[2] | 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8. |
[3] | 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8. |
[4] | 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24. |
[5] | 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40. |
[6] | 王子傲, 黄朋, 程盼, 刘轲, 向阳, 周丰, 高飞, 王栋. 梯度结构纳米纤维膜的制备及其对啤酒除菌过滤性能[J]. 纺织学报, 2024, 45(11): 29-36. |
[7] | 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234. |
[8] | 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243. |
[9] | 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207. |
[10] | 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9. |
[11] | 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25. |
[12] | 蔺志浩, 房磊, 贾娇娇, 扈延龄, 房宽峻. 负载生长因子的微纳米纤维创面敷料的制备与应用研究进展[J]. 纺织学报, 2024, 45(09): 244-251. |
[13] | 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41. |
[14] | 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17. |
[15] | 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 20
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|