纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 1-9.doi: 10.13475/j.fzxb.20240800301

• 纤维材料 •    下一篇

光响应螺噁嗪掺杂长余辉发光纤维的制备及其性能

王小艳, 杨书康, 肖国威, 杜金梅, 许长海()   

  1. 青岛大学 纺织服装学院, 山东 青岛 266071
  • 收稿日期:2024-08-02 修回日期:2024-11-08 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 许长海(1975—),男,教授,博士。研究方向为生态纺织化学及颜色化学和科学。E-mail: changhai_xu@qdu.edu.cn
  • 作者简介:王小艳(1994—),女,博士生。主要研究方向为多功能纤维。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    青岛市博士后应用项目(QDBSH20230102082);国家自然科学基金青年科学基金项目(22405148)

Preparation and performance of photoresponsive long-afterglow phosphorescent fibers with spirooxazine doping

WANG Xiaoyan, YANG Shukang, XIAO Guowei, DU Jinmei, XU Changhai()   

  1. College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2024-08-02 Revised:2024-11-08 Published:2025-02-15 Online:2025-03-04

摘要:

针对目前发光纤维颜色单一、制备工艺复杂等问题,将具有光响应的光致变色分子螺噁嗪(SPO)和长余辉材料间苯二甲酸(IPA)通过简单的掺杂方式引入聚氨酯纺丝液中,利用湿法纺丝制备兼具光致变色和长余辉发光特性的光刺激响应型发光纤维。研究结果表明:间苯二甲酸可作为优异的磷光供体材料掺杂进聚氨酯赋予其长余辉发光特性;当间苯二甲酸的添加量为聚氨酯纺丝液质量的12.5%时,聚氨酯纤维的长余辉发光性能最佳;利用SPO的光致变色特性调控纤维长余辉发光颜色,纤维经紫外光照射后迅速从无色变为蓝色,关闭紫外光后,其展现出蓝色渐变为绿色的动态长余辉特性,发光持续时间约7 s。相较于传统的发光纤维,此纤维既兼具了光致变色的可视化,又在时间尺度上调控了其动态多色的长余辉性能。

关键词: 聚氨酯, 光致变色, 螺噁嗪, 间苯二甲酸, 湿法纺丝, 发光纤维

Abstract:

Objective Photoresponsive luminescent fibers represent a promising new type of optical functional material for applications in optics, sensing, and biomedicine. Many efforts have been focused on photochromic fibers and fluorescent fibers to develop photoresponsive fibers. However, long-afterglow luminescent fibers as a type of photoresponsive fibers are still rare, partially related to the process complexity, dependance on advanced technologies, specialized equipment, and high preparation costs.

Method In this work, spirooxazine (SPO) with photochromic properties and long-afterglow material isophthalic acid (IPA) were introduced into the polyurethane spinning solution through doping. A stimuli responsive luminescent polyurethane fiber was prepared using wet spinning. The effect of doping amount of IPA on the long-afterglow luminescence performance of fibers was investigated. The dynamic multi-color long-afterglow luminescence properties of polyurethane fibers were characterized by the phosphorescence spectra, long-lived phosphorescence lifetime and the afterglow luminescent images.

Results The fluorescence emission positions of polyurethane fibers with different mass fractions of isophthalic acid (IPA) were found almost the same, with a significant fluorescence emission characteristic peak at 404 nm. However, the fluorescence emission band of the fibers was relatively broad when the doping mass fraction of IPA was below 10%, and it became noticeably narrower when the content exceeded 10%. The phosphorescence emission intensity of polyurethane fibers gradually increased as the mass fractions of IPA increased. However, there was no significant improvement in the phosphorescence intensity, the afterglow duration and the luminance of the polyurethane fibers when the mass fraction of IPA increased from 12.5% to 15.0%, indicating an optimal doping IPA mass concentration was 12.5%. The afterglow luminescent polyurethane fibers displayed a bright green afterglow lasting over 7 s after the UV light was removed. In addition, the long-lived phosphorescence lifetime of polyurethane fibers with different mass fractions of (IPA) was also investigated. IPA emitted at 500 nm with a long-lived phosphorescence lifetime of 1 667 ms when excited at 315 nm. It was found that the long-lived phosphorescence lifetime of polyurethane fibers containing different mass fractions of IPA were almost the same as that of IPA, indicating that the long-lived phosphorescence lifetime of polyurethane fibers doped with IPA was not significantly changed. Additionally, the long-afterglow luminescence color of polyurethane fiber was regulated utilizing the photochromic properties of spirooxazine (SPO) in order to obtain the polyurethane fibers with dynamic multi-color long-afterglow luminescent over time. There was a significant fluorescence emission characteristic peak at 404 nm for the polyurethane fibers co-doped with IPA and SPO (IPA/SPO/polyurethane fibers). While the phosphorescence emission characteristic peak of IPA/SPO/polyurethane fiber had a blue shift, moving from 500 nm to 435 nm, because of the light response characteristic of SPO. IPA/SPO/polyurethane fibers emitted blue fluorescence under 365 nm UV irradiation. After turning off the UV irradiation, the polyurethane fibers exhibited a dynamic process of rapid recovery from blue to white under daylight. In the dark, polyurethane fibers quickly displayed a blue afterglow lasting about 1 s. It turned cyan after 3 s and finally turned green. The luminescence intensity of polyurethane fibers gradually decreased and disappeared after 7 s.

Conclusion Isophthalic acid (IPA) is proven to be an excellent energy donor for the molecular doping systems. It can be doped into polyurethane spinning to endow polyurethane fiber with long-afterglow luminescence properties. The polyurethane fiber exhibited the best long-afterglow luminescent performance when the addition amount of IPA was 12.5% of the mass concentration of the polyurethane spinning solution. The long-afterglow luminescence color of polyurethane fiber was regulated utilizing the photochromic properties of spirooxazine (SPO). The polyurethane fibers co-doped with IPA and SPO (IPA/SPO/polyurethane fibers) exhibited excellent photochromic and long afterglow luminescence properties. The color of polyurethane fiber quickly changed from colorless to blue upon UV irradiation. After the UV light was turned off, it exhibited a dynamic long afterglow luminescence gradually changing from blue to green, with a luminescence duration of about 7 s. The polyurethane fibers not only provide visual photochromism but also regulate its dynamic multi-color long afterglow performance over time.

Key words: polyurethane, photochromic, spirooxazine, isophthalic acid, wet spinning, luminous fiber

中图分类号: 

  • TQ342.89

图1

光响应型长余辉聚氨酯纤维湿法纺丝示意图"

图2

不同间苯二甲酸含量的聚氨酯纤维的荧光光谱图"

图3

不同间苯二甲酸含量的聚氨酯纤维的磷光光谱图"

图4

不同间苯二甲酸含量聚氨酯纤维的长余辉实物照片"

图5

间苯二甲酸的磷光寿命"

图6

不同间苯二甲酸含量的聚氨酯纤维的磷光寿命"

图7

间苯二甲酸及不同聚氨酯纤维的荧光光谱"

图8

间苯二甲酸及不同聚氨酯纤维的磷光光谱 注:图中磷光强度均归一化到区间[0,1]。"

图9

纯聚氨酯纤维、SPO/聚氨酯纤维、IPA/聚氨酯纤维和IPA/SPO/聚氨酯纤维的长余辉实物图"

图10

IPA/SPO/聚氨酯纤维的磷光寿命"

图11

IPA/SPO/聚氨酯纤维的长余辉及光致变色过程实物图"

[1] DALCEA M, MOHWALD H, SKIRTACH G A. Stimuli-responsive LbL capsules and nanoshells for drug delivery[J]. Advanced Drug Delivery Reviews, 2011, 63(9): 730-747.
doi: 10.1016/j.addr.2011.03.010 pmid: 21463658
[2] 史慕杨, 晋阳, 葛明桥. 具有热敏变色功能的发光纤维的制备及性能[J]. 硅酸盐学报, 2021, 49(12): 2595-2605.
SHI Muyang, JIN Yang, GE Mingqiao. Preparation and properties of luminescent fibers with thermochromic function[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2595-2605.
[3] SEAN J D, SIMON J A, YARI F Y, et al. Hydrogen-bonded supramolecular liquid crystal polymers: smart materials with stimuli-responsive, self-healing, and recyclable properties.[J]. Chemical Reviews, 2021, 122(5): 4946-4975.
doi: 10.1021/acs.chemrev.1c00330 pmid: 34428022
[4] GONG T, SUI Q, LI P, et al. Versatile and switchable responsive properties of a lanthanide-viologen metal-organic framework[J]. Small, 2019. DOI:10.1002/smll.201803468.
[5] 张叶. 刺激响应型聚合物发光材料的设计、制备及其在光学防伪中的应用[D]. 南京: 南京邮电大学, 2023: 36-39.
ZHAGN Ye. Design and preparation of stimuli-responsive polymeric luminescent materials and their application in optical anti-counterfeiting[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023: 36-39.
[6] HANA M A, AHMED H, KHOLOOD M, et al. Development of mechanically reliable and transparent photochromic film using solution blowing spinning technology for anti-counterfeiting applications[J]. ACS Omega, 2021, 6(41): 27315-27324.
doi: 10.1021/acsomega.1c04127 pmid: 34693152
[7] GAO R, KODAIMATI M S, YAN D. Recent advances in persistent luminescence based on molecular hybrid materials[J]. Chemical Society Reviews, 2021, 50(9): 5564-5589.
doi: 10.1039/d0cs01463j pmid: 33690765
[8] LI D, YANG Y J, YANG J, et al. Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color[J]. Nature Communications, 2022.DOI:10.1038/s41467-022-28011-6.
[9] LI H, LI H H, WANG W, et al. Stimuli-responsive circularly polarized organic ultralong room temperature phosphorescence[J]. Angewandte Chemie International Edition, 2020, 59(12): 4756-4762.
[10] 卞雪艳. 发光、变色海藻纤维的制备及性能研究[D]. 青岛: 青岛大学, 2018: 53-56.
BIAN Xueyan. Preparation and properties of luminescent and discolored alginate fibers[D]. Qingdao: Qingdao University, 2018: 53-56.
[11] 张默涵, 李永贵, 康明明, 等. 光致变色聚酯纤维的制备[J]. 化纤与纺织技术, 2022, 51(4): 19-22.
ZHAGN Mohan, LI Yonggui, KANG Mingming, et al. Preparation of photochromic polyester fiber[J]. Chemical Fiber & Textile Technology, 2022, 51(4): 19-22.
[12] 孙静, 马会利, 安众福, 等. 高分子长余辉发光材料研究进展[J]. 发光学报, 2020, 41(12): 1490-1503.
SUN Jing, MA Huili, AN Zhongfu, et al. Recent development of polymers with long-lived persistent luminescence[J]. Chinese Journal of Luminescence, 2020, 41(12): 1490-1503.
[13] SHI C, ZHU Y N, LI X Q, et al. Composites of CaAl2O4: Eu2+,Nd3+/Ca0.25Sr0.75S: Eu2+ in polyacry-lonitrile fibers with tri-stimuli-responsive persistent luminescence[J]. Ecs Journal of Solid State Science and Technology, 2018, 7 (6): 83-87.
[14] 王勇, 杜平凡. 长余辉海藻酸钠纤维的制备及其性能[J]. 现代纺织技术, 2024, 32(10): 78-84.
WANG Yong, DU Pingfan. Preparation and properties characterization of long afterglow sodium alginate fiber[J]. Advanced Textile Technology, 2024, 32(10): 78-84.
[15] 李雪. 基于螺噁嗪的光致变色荧光聚合物的合成与性能研究[D]. 广州: 华南理工大学, 2017: 13-15.
LI Xue. Synthesis and Properties of photochromic fluorescent polymers based on spirooxazine[D]. Guangzhou: South China University of Technology, 2017: 13-15.
[16] GAO A, SUN F X, DUAN Y L, et al. Programmable encryption based on photochromism of spiropyrans and donor-acceptor stenhouse adducts[J]. Advanced Functional Materials, 2024.DOI: 10.1002/adfm.202316457.
[17] 邓摇摇. 基于螺噁嗪类光致变色材料的制备及研究[D]. 南京: 东南大学, 2020: 9-16.
DENG Yaoyao. Preparation and study of spirooxazine photochromic materials[D]. Nanjing: Southeast University, 2020: 9-16.
[18] LIU S Y, LIN Y H, YAN D P, et al. Dynamic multi-color long-afterglow and cold-warm white light through phosphorescence resonance energy transfer in host-guest metal-organic frameworks[J]. Science China Chemistry, 2023, 66(12): 3532-3538.
[19] YAN T S, LI X Y, XU Z, et al. Experimental and theoretical study on photochromism of triphenylvinyl-naphthopyrans[J]. Dyes and Pigments, 2023.DOI: 10.1016/j.dyepig.2022.111070.
[20] 刘晓妮, 孟家光, 王红兴. 聚氨酯-螺噁嗪光致变色微胶囊的制备及性能[J]. 印染, 2021, 47(1): 1-5.
LIU Xiaoni, MENG Jiaguang, WAGN Hongxing. Preparation and properties of polyurethane-spiroxazine photochromic microcapsules[J]. China Dyeing & Finishing, 2021, 47(1): 1-5.
[21] 肖楠, 于恒哲, 高文莉, 等. 基于螺噁嗪的快速可逆力响应性聚合物的研究[J]. 高分子学报, 2021, 52(9): 1053-1057.
XIAO Nan, YU Hengzhe, GAO Wenli, et al. Fast reversible mechano-responsive polymers based on spirooxazine[J]. Acta Polymerica Sinica, 2021, 52(9): 1053-1057.
[22] ZHOU B, YAN D P. Hydrogen-bonded two-component ionic crystals showing enhanced long-lived room-temperature phosphorescence via TADF-Assisted Förster resonance energy transfer[J]. Advanced Functional Materials, 2019.DOI: 10.1002/adfm.201807599.
[1] 杨露, 孟家光, 陈雨青, 支超. 基于废旧纺织品的湿度响应纤维素/聚氨酯复合材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 26-34.
[2] 刘仁义, 杨琴, 孙宝忠, 顾伯洪, 张威. 织物增强复合材料的电热驱动形状记忆回复行为[J]. 纺织学报, 2025, 46(01): 72-79.
[3] 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88.
[4] 欧宗权, 于金超, 潘志娟. 光致变色聚乳酸/聚3-羟基丁酸酯共混纤维的纺制及其结构与性能[J]. 纺织学报, 2024, 45(12): 9-17.
[5] 罗梦颖, 陈慧君, 夏明, 王栋, 李沐芳. 弹性导电复合纤维的制备及其应变与温度传感性能[J]. 纺织学报, 2024, 45(10): 9-15.
[6] 王理杰, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 衣康酸聚乙二醇单醚酯封端水性聚氨酯织物涂层剂的制备及其性能[J]. 纺织学报, 2024, 45(10): 145-151.
[7] 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120.
[8] 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106.
[9] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[10] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[11] 程献伟, 刘亚文, 关晋平, 陈瑞. 生物质植酸改性聚氨酯涂层锦纶6织物的制备及其阻燃性能[J]. 纺织学报, 2024, 45(06): 120-126.
[12] 胥家辉, 郭肖青, 王伟, 王怀芳, 张传杰, 宫兆庆. 海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制[J]. 纺织学报, 2024, 45(06): 16-22.
[13] 权衡, 钱赛龙, 刘诗楠, 邹春梅, 倪丽杰. 非线性阳离子聚氨酯改性有机硅柔软剂的制备及其应用性能[J]. 纺织学报, 2024, 45(05): 121-128.
[14] 李琛, 王冬, 仲鸿天, 董朋, 付少海. 超细纤维合成革含浸用水性聚氨酯的合成及其应用[J]. 纺织学报, 2024, 45(03): 129-136.
[15] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
Viewed
Full text
161
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 71 0 0 90

  From Others local
  Times 24 137
  Rate 15% 85%

Abstract
144
Just accepted Online first Issue
0 0 144
  From Others local
  Times 45 99
  Rate 31% 69%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!