纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 51-60.doi: 10.13475/j.fzxb.20240802901
赵珂1, 张恒1(), 程文胜2, 甄琪3, 步青云1, 崔景强2
ZHAO Ke1, ZHANG Heng1(), CHENG Wensheng2, ZHEN Qi3, BU Qingyun1, CUI Jingqiang2
摘要:
为解决无序结构聚乳酸(PLA)超细纤维材料医用防护性的不足,以石蜡(PW)共混改性PLA为原料,通过熔喷原位牵伸工艺制备了类蒲叶PLA超细纤维材料,并对其结构特征和医用防护性进行表征和测试。结果表明:所制备样品的纤维直径分布在1~8 μm,取向角分布在-30°~30°的纤维占比为63.24%,表现出清晰的类蒲叶高定向结构;纤维直径小于3 μm的超细纤维占比、取向角小于30°的定序分布和特征间距定性表征了类蒲叶高定向排列结构特征,所建立的类蒲叶结构参数随工艺参数变化的二次回归方程置信度为0.97;受益于类蒲叶结构的有效调控,滚动倾斜角度减小到32.38°,水接触角和耐静水压分别增大到155°和2 597 Pa,满足国家标准的技术要求,为超细纤维医用防护材料的仿生结构设计和绿色化制备提供实施例。
中图分类号:
[1] | LIN Yanyan, WANG Chao, MIAO Dongyang, et al. A trilayered composite fabric with directional water transport and resistance to blood penetration for medical protective clothing[J]. ACS Applied Materials & Interfaces, 2022, 14(16): 18944-18953. |
[2] | SU Xiaolong, JIA Chao, XIANG Hengxue, et al. Research progress in preparation, properties, and applications of medical protective fiber materials[J]. Applied Materials Today, 2023.DOI: 10.1016/J.APMT.2023.101792. |
[3] |
ZHANG Heng, CAO Yang, ZHEN Qi, et al. Facile preparation of PET/PA6 bicomponent microfilament fabrics with tunable porosity for comfortable medical protective clothing[J]. ACS Applied Bio Materials, 2022, 5(7): 3509-3518.
doi: 10.1021/acsabm.2c00447 pmid: 35793521 |
[4] | 安琪, 付译鋆, 张瑜, 等. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(8): 188-196. |
AN Qi, FU Yijun, ZHANG Yu, et al. Research progress of nonwovens for medical protective gar-ment[J]. Journal of Textile Research, 2020, 41(8): 188-196. | |
[5] | JENSEN M G, O'SHAUGHNESSY P T, SHAFFER M, et al. Simple fabrication of an electrospun polystyrene microfiber filter that meets N95 filtering facepiece respirator filtration and breathability standards[J]. Journal of Applied Polymer Science, 2023.DOI: 10.1002/APP.53406. |
[6] | YU Han, LI Chunying, TANG Haida, et al. An experimental study on the resuspension characteristics of evaporation residues of human exhaled droplets on medical clothing[J]. Building and Environment, 2023.DOI: 10.1016/J.BUILDENV.2023.110365. |
[7] | LI Jiahao, GUO Zhiguang, LIU Weimin. Biomimetic superhydrophobic materials construct from binary structure: a review on design, properties, and applications[J]. Advanced Materials Interfaces, 2023.DOI: 10.1002/ADMI.202201847. |
[8] | LIN Chang, HUANG Yufang, LI Xiao, et al. Fabrication of superhydrophobic surfaces inspired by ″stomata effect″ of plant leaves via swelling-vesiculating-cracking method[J]. Chemical Engineering Journal, 2020.DOI: 10.1016/j.cej.2020.125935. |
[9] | SUIINDIK Z H, ADOTEY E, KYDYRBAY N, et al. Formulating superhydrophobic coatings with silane for microfiber applications[J]. Eurasian Chemico-Technological Journal, 2024, 26(2): 53-60. |
[10] | ZHANG Dong, JI Jinchao, YAN Chengtao, et al. Research advances in bio-inspired superhydrophobic surface: bridging nature to practical applications[J]. Journal of Industrial and Engineering Chemistry, 2024.DOI: 10.1016/j.jiec.2024.05.051. |
[11] | NEDJMA Mamine, NEDJOUD Grara, FADILA Khaldi, et al. Determination of the toxic effects of heavy metals on the morpho-anatomical responses of the leaf of Typha latifolia as a biomonitoring tool[J]. Plants, 2024.DOI: 10.3390/PLANTS13020176. |
[12] | XIONG Chengdong, QUAN Zhenzhen, ZHANG Hongnan, et al. Hierarchically tunable structure of polystyrene-based microfiber membranes for separation and selective adsorption of oil-water[J]. Applied Surface Science, 2020.DOI: 10.1016/j.apsusc.2020.147400. |
[13] | ZHANG Yi, LI Yifu, TAN Zhongchao. Development of adjustable high-to low-adhesive superhydrophobicity using aligned electrospun fibers[J]. Langmuir, 2023, 39(45): 15986-15996. |
[14] | QIN Zixuan, ZHANG Heng, ZHAI Qian, et al. Flexible polylactic acid/polyethylene glycol@erucamide microfibrous packaging with ordered fiber orienta-tion[J]. Journal of Polymer Research, 2024.DOI: 10.1007/s10965-024-03888-7. |
[15] | ALEXANDER M Bier, MICHAEL Redel, SCHUBERT D. Model to predict polymer fibre diameter during melt spinning[J]. Advances in Polymer Technology, 2023.DOI: 10.1155/2023/7983819. |
[16] | 翟倩, 张恒, 赵珂, 等. 仿生竹节纤维基加湿材料的叠层设计及其导湿快干性能[J]. 纺织学报, 2024, 45(2): 1-10. |
ZHAI Qian, ZHANG Heng, ZHAO Ke, et al. Laminated design and water quick-drying performance of biomimetic bamboo-tube fibrous humidifying mate-rials[J]. Journal of Textile Research, 2024, 45(2): 1-10. | |
[17] |
ANITA Roth-Nebelsick, WILFRIED Konrad, MARTIN Ebner, et al. When rain collides with plants: patterns and forces of drop impact and how leaves respond to them[J]. Journal of Experimental Botany, 2022, 73(4): 1155-1175.
doi: 10.1093/jxb/erac004 pmid: 35038724 |
[18] | MAHESH C Dubey, DAMBARUDHAR Mohanta. Coexisting superhydrophobicity and superadhesion features of Ziziphus mauritiana abaxial leaf surface with possibility of biomimicking using electrospun micro-fibers[J]. Physics of Fluids, 2024.DOI: 10.1063/5.0176596. |
[19] |
孟娜, 王先锋, 李召岭, 等. 熔喷非织造布的驻极技术研究进展[J]. 纺织学报, 2023, 44(12): 225-232.
doi: 10.13475/j.fzxb.20220701302 |
MENG Na, WANG Xianfeng, LI Zhaoling, et al. Research progress in electret technology for melt-blown nonwovens[J]. Journal of Textile Research, 2023, 44(12): 225-232.
doi: 10.13475/j.fzxb.20220701302 |
|
[20] | MENDOZADUARTE MÓnica Elvira, ESTRADAMORENO Iván Alziri, LÓPEZMARTÍNEZ Erika Ivonne, et al. Effect of the addition of different natural waxes on the mechanical and rheological behavior of PLA: a comparative study[J]. Polymers, 2023.DOI: 10.3390/POLYM15020305. |
JU Zehui, BROSSE Nicolas, HOPPE Sandrine, et al. Thermal and mechanical properties of polyethylene glycol (PEG)-modified lignin/polylactic acid (PLA) biocomposites[J]. International Journal of Biological Macromolecules, 2024.DOI: 10.1016/J.IJBIOMAC.2024.129997. | |
[21] | ZHANG Li, XU Jian, HU Zhiqing, et al. Antireflective superhydrophobic and robust coating based on chitin nanofibers and methylsilanized silica for outdoor applications[J]. ACS Applied Materials & Interfaces, 2024.DOI: 10.1021/ACSAMI.4C05778. |
[1] | 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179. |
[2] | 王容容, 周洲, 冯祥, 申莹, 刘峰, 邢剑. 聚酯纤维与聚乙烯/聚丙烯双组分纤维多孔吸声材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 61-68. |
[3] | 张蕊, 叶苏娴, 王建, 邹专勇. 全织物型离电式柔性压力传感器的制备及其性能[J]. 纺织学报, 2025, 46(02): 113-121. |
[4] | 叶孔萌, 秦子轩, 康桂田, 李赛, 韩德孝, 张恒. 高密度聚乙烯超细纤维篷布的闪蒸-水刺法制备及其防水透湿性[J]. 纺织学报, 2025, 46(01): 25-33. |
[5] | 左红梅, 高敏, 阮芳涛, 邹梨花, 徐珍珍. MXene-氧化石墨烯改性碳纤维/聚乳酸复合材料制备及其力学性能[J]. 纺织学报, 2025, 46(01): 9-15. |
[6] | 肖鑫, 李伟, 卢润, 姜会钰, 李青. 等离子体协同过氧化氢活化体系对纯棉水刺非织造布的练漂处理[J]. 纺织学报, 2024, 45(12): 118-127. |
[7] | 夏梦, 成悦, 刘蓉, 李大伟, 付译鋆. 普鲁士蓝涂层非织造材料在细菌检测中的应用[J]. 纺织学报, 2024, 45(12): 166-171. |
[8] | 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24. |
[9] | 许秋歌, 郭寻, 朵永超, 吴若楠, 钱晓明, 宋兵, 符浩, 赵宝宝. 高收缩聚酯/聚酰胺6中空橘瓣型纺黏针刺非织造布的制备及其性能[J]. 纺织学报, 2024, 45(12): 41-49. |
[10] | 欧宗权, 于金超, 潘志娟. 光致变色聚乳酸/聚3-羟基丁酸酯共混纤维的纺制及其结构与性能[J]. 纺织学报, 2024, 45(12): 9-17. |
[11] | 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45. |
[12] | 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54. |
[13] | 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160. |
[14] | 刘文龙, 李好义, 何东洋, 李长金, 张杨, 马秀清, 李满意, 杨卫民. 低密度聚乙烯熔喷工艺及其非织造布性能[J]. 纺织学报, 2024, 45(10): 31-38. |
[15] | 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 31
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|