纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 51-60.doi: 10.13475/j.fzxb.20240802901

• 纤维材料 • 上一篇    下一篇

类蒲叶结构聚乳酸熔喷非织造材料的制备及其性能

赵珂1, 张恒1(), 程文胜2, 甄琪3, 步青云1, 崔景强2   

  1. 1.中原工学院 智能纺织与织物电子学院, 河南 郑州 451191
    2.河南驼人医疗器械研究院有限公司,河南 新乡 453400
    3.中原工学院 智能服饰与服装学院, 河南 郑州 451191
  • 收稿日期:2024-08-19 修回日期:2024-10-18 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 张恒(1986—),男,副教授,博士。研究方向为新型非织造材料的加工技术及其功能性应用。E-mail: m-esp@163.com
  • 作者简介:赵珂(2002—),女,硕士生。主要研究方向为功能性纤维材料的结构设计。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    河南省高校科技创新人才支持计划资助项目(24HASTIT011);河南省重大科技专项项目(231100320200);中原工学院优秀科技创新人才支持计划项目(K2023YXRC01);中原工学院学科骨干教师支持计划项目(GG202422)

Melt-blown process and structural characterization of bio-typha polylactic acid medical protective materials

ZHAO Ke1, ZHANG Heng1(), CHENG Wensheng2, ZHEN Qi3, BU Qingyun1, CUI Jingqiang2   

  1. 1. College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Henan Tuoren Medical Device Research Institute Co., Ltd., Xinxiang, Henan 453400, China
    3. College of Fashion Technology, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
  • Received:2024-08-19 Revised:2024-10-18 Published:2025-02-15 Online:2025-03-04

摘要:

为解决无序结构聚乳酸(PLA)超细纤维材料医用防护性的不足,以石蜡(PW)共混改性PLA为原料,通过熔喷原位牵伸工艺制备了类蒲叶PLA超细纤维材料,并对其结构特征和医用防护性进行表征和测试。结果表明:所制备样品的纤维直径分布在1~8 μm,取向角分布在-30°~30°的纤维占比为63.24%,表现出清晰的类蒲叶高定向结构;纤维直径小于3 μm的超细纤维占比、取向角小于30°的定序分布和特征间距定性表征了类蒲叶高定向排列结构特征,所建立的类蒲叶结构参数随工艺参数变化的二次回归方程置信度为0.97;受益于类蒲叶结构的有效调控,滚动倾斜角度减小到32.38°,水接触角和耐静水压分别增大到155°和2 597 Pa,满足国家标准的技术要求,为超细纤维医用防护材料的仿生结构设计和绿色化制备提供实施例。

关键词: 蒲叶, 仿生结构, 聚乳酸, 熔喷, 原位牵伸, 医用防护, 非织造

Abstract:

Objective Medical protective materials serve as the last defense line for the safety of medical and healthcare personnel. A densely packed micro-porous structure with high directional alignment plays a significant role in preventing the penetration of liquids. This paper reports a study on the structural design of the melt-blown microfibrous material inspired by the typha, and experimentally analyzes the lophotrichous structure parameters and medical protective performance of this material. The aim is to achieve a green and efficient medical protective material.

Method In this study, we utilized polylactic acid (PLA) modified by paraffin wax (PW) blending as the primary material, and fabricated lophotrichous structural PLA microfibrous membranes via the in-situ drawing melt-blown process. Simultaneously, the sample structures were characterized using scanning electron microscopy. Additionally, we conducted experimental analyses on the medical protective performance using liquid contact angle measuring instrument, fully automatic hydrostatic pressure tester, and W3-type cup method water vapor permeability tester.

Results In terms of micro-morphology, the PLA microfibrous fabrics exhibited a lophotrichous high-orientation structure along the direction of the stretching force. This structure provided orientation for liquid rolling on its surface. Moreover, an increase in the drafting ratios and the PW mass caused reduction in fiber diameter distribution and orientation angle distribution of the samples, providing a dense, porous structural foundation for easy liquid rolling on the surface. Concurrently, the characteristic parameters of the lophotrichous structure, such as the microfibers ratio, the oriented distribution, and feature spacing, were characterized by the features of PLA microfibrous fabrics with a fiber diameter less than 3 μm and an orientation angle less than 30°. A quadratic regression equation was established to describe the variation of these lophotrichous structural parameters with process parameters which had a confidence level of 0.97. The results indicated that when the drafting ratios was 3.0, the microfibers ratio increased to 18.88%, and the longitudinal static contact angle and static water pressure increased to 147° and 2 721 Pa, respectively. Compared to samples with the PW mass of 1%, the inclination angle and water vapor permeability of the PW-5% sample decreased by 48.36% and 10.35%, respectively. As the drafting ratios increased from 1.8 to 3.0, the oriented distribution in the samples increased from 35.01% to 63.24%, while the horizontal static contact angle and static water pressure increased from 140° and 2 083 Pa to 155° and 2 597 Pa, representing increases of 10.71% and 24.68%, respectively.

Conclusion The PLA microfibrous membranes with a lophotrichous highly oriented structure, prepared using the in-situ drawing melt-blown process, have tremendous application potential in the medical protective field. Among these, the PLA microfibrous fabrics, due to their dense pore structure, exhibit superior liquid barrier properties and outstanding biodegradability, meeting the requirements as green and efficient medical protective materials. This offers reference for the structural design of medical protective materials.

Key words: typha, biomimetic structure, polylactic acid, melt-blown, in-situ drafting, medical protection, nonwoven

中图分类号: 

  • TS174

图1

PLA超细纤维材料的熔喷原位牵伸工艺原理图"

表1

熔喷原位牵伸工艺的主要参数"

设备 特征参数 温度/℃
螺杆挤出机 一区温度 185
二区温度 215
三区温度 225
计量泵 转速为4 r/min 225
熔喷模头 喷丝孔直径0.25 mm,长径比10∶1 225
罗茨风机 热风压力为40 kPa 225
其它 接收距离为18 cm
牵伸比例为1.8、2.4、2.6、2.8和3.0

图2

蒲叶及PLA超细纤维材料的表面形貌照片"

图3

PLA超细纤维材料样品表面SEM照片及超细纤维占比特征"

图4

超细纤维占比三维空间曲面响应图"

图5

不同牵伸比样品的表面形貌照片及取向角分布曲线"

图6

不同牵伸比样品的定序分布曲线"

图7

定序分布三维空间曲面响应图"

表2

PLA超细纤维材料样品的特征间距"

样品编号 特征间距/μm 样品编号 特征间距/μm
PW-1% 6.67 Q1.8 7.25
PW-2% 5.53 Q2.4 5.17
PW-3% 4.43 Q2.6 4.12
PW-4% 3.85 Q2.8 3.67
PW-5% 2.39 Q3.0 2.22

图8

特征间距三维空间曲面响应图"

图9

PLA超细纤维材料样品的水接触角曲线"

图10

PLA超细纤维材料的红外光谱图"

图11

PLA超细纤维材料的液体滚落特性"

表3

PLA超细纤维材料的防水透湿性能"

样品编号 耐静水压/
Pa
透湿率/
(g·m-2·(24 h)-1)
PW-1% 2 075 2 114
PW-2% 2 322 2 105
PW-3% 2 574 2 090
PW-4% 2 635 2 040
PW-5% 2 721 1 895
Q1.8 2 083 2 193
Q2.4 2 112 2 121
Q2.6 2 311 2 082
Q2.8 2 358 2 012
Q3.0 2 597 1 983
[1] LIN Yanyan, WANG Chao, MIAO Dongyang, et al. A trilayered composite fabric with directional water transport and resistance to blood penetration for medical protective clothing[J]. ACS Applied Materials & Interfaces, 2022, 14(16): 18944-18953.
[2] SU Xiaolong, JIA Chao, XIANG Hengxue, et al. Research progress in preparation, properties, and applications of medical protective fiber materials[J]. Applied Materials Today, 2023.DOI: 10.1016/J.APMT.2023.101792.
[3] ZHANG Heng, CAO Yang, ZHEN Qi, et al. Facile preparation of PET/PA6 bicomponent microfilament fabrics with tunable porosity for comfortable medical protective clothing[J]. ACS Applied Bio Materials, 2022, 5(7): 3509-3518.
doi: 10.1021/acsabm.2c00447 pmid: 35793521
[4] 安琪, 付译鋆, 张瑜, 等. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(8): 188-196.
AN Qi, FU Yijun, ZHANG Yu, et al. Research progress of nonwovens for medical protective gar-ment[J]. Journal of Textile Research, 2020, 41(8): 188-196.
[5] JENSEN M G, O'SHAUGHNESSY P T, SHAFFER M, et al. Simple fabrication of an electrospun polystyrene microfiber filter that meets N95 filtering facepiece respirator filtration and breathability standards[J]. Journal of Applied Polymer Science, 2023.DOI: 10.1002/APP.53406.
[6] YU Han, LI Chunying, TANG Haida, et al. An experimental study on the resuspension characteristics of evaporation residues of human exhaled droplets on medical clothing[J]. Building and Environment, 2023.DOI: 10.1016/J.BUILDENV.2023.110365.
[7] LI Jiahao, GUO Zhiguang, LIU Weimin. Biomimetic superhydrophobic materials construct from binary structure: a review on design, properties, and applications[J]. Advanced Materials Interfaces, 2023.DOI: 10.1002/ADMI.202201847.
[8] LIN Chang, HUANG Yufang, LI Xiao, et al. Fabrication of superhydrophobic surfaces inspired by ″stomata effect″ of plant leaves via swelling-vesiculating-cracking method[J]. Chemical Engineering Journal, 2020.DOI: 10.1016/j.cej.2020.125935.
[9] SUIINDIK Z H, ADOTEY E, KYDYRBAY N, et al. Formulating superhydrophobic coatings with silane for microfiber applications[J]. Eurasian Chemico-Technological Journal, 2024, 26(2): 53-60.
[10] ZHANG Dong, JI Jinchao, YAN Chengtao, et al. Research advances in bio-inspired superhydrophobic surface: bridging nature to practical applications[J]. Journal of Industrial and Engineering Chemistry, 2024.DOI: 10.1016/j.jiec.2024.05.051.
[11] NEDJMA Mamine, NEDJOUD Grara, FADILA Khaldi, et al. Determination of the toxic effects of heavy metals on the morpho-anatomical responses of the leaf of Typha latifolia as a biomonitoring tool[J]. Plants, 2024.DOI: 10.3390/PLANTS13020176.
[12] XIONG Chengdong, QUAN Zhenzhen, ZHANG Hongnan, et al. Hierarchically tunable structure of polystyrene-based microfiber membranes for separation and selective adsorption of oil-water[J]. Applied Surface Science, 2020.DOI: 10.1016/j.apsusc.2020.147400.
[13] ZHANG Yi, LI Yifu, TAN Zhongchao. Development of adjustable high-to low-adhesive superhydrophobicity using aligned electrospun fibers[J]. Langmuir, 2023, 39(45): 15986-15996.
[14] QIN Zixuan, ZHANG Heng, ZHAI Qian, et al. Flexible polylactic acid/polyethylene glycol@erucamide microfibrous packaging with ordered fiber orienta-tion[J]. Journal of Polymer Research, 2024.DOI: 10.1007/s10965-024-03888-7.
[15] ALEXANDER M Bier, MICHAEL Redel, SCHUBERT D. Model to predict polymer fibre diameter during melt spinning[J]. Advances in Polymer Technology, 2023.DOI: 10.1155/2023/7983819.
[16] 翟倩, 张恒, 赵珂, 等. 仿生竹节纤维基加湿材料的叠层设计及其导湿快干性能[J]. 纺织学报, 2024, 45(2): 1-10.
ZHAI Qian, ZHANG Heng, ZHAO Ke, et al. Laminated design and water quick-drying performance of biomimetic bamboo-tube fibrous humidifying mate-rials[J]. Journal of Textile Research, 2024, 45(2): 1-10.
[17] ANITA Roth-Nebelsick, WILFRIED Konrad, MARTIN Ebner, et al. When rain collides with plants: patterns and forces of drop impact and how leaves respond to them[J]. Journal of Experimental Botany, 2022, 73(4): 1155-1175.
doi: 10.1093/jxb/erac004 pmid: 35038724
[18] MAHESH C Dubey, DAMBARUDHAR Mohanta. Coexisting superhydrophobicity and superadhesion features of Ziziphus mauritiana abaxial leaf surface with possibility of biomimicking using electrospun micro-fibers[J]. Physics of Fluids, 2024.DOI: 10.1063/5.0176596.
[19] 孟娜, 王先锋, 李召岭, 等. 熔喷非织造布的驻极技术研究进展[J]. 纺织学报, 2023, 44(12): 225-232.
doi: 10.13475/j.fzxb.20220701302
MENG Na, WANG Xianfeng, LI Zhaoling, et al. Research progress in electret technology for melt-blown nonwovens[J]. Journal of Textile Research, 2023, 44(12): 225-232.
doi: 10.13475/j.fzxb.20220701302
[20] MENDOZADUARTE MÓnica Elvira, ESTRADAMORENO Iván Alziri, LÓPEZMARTÍNEZ Erika Ivonne, et al. Effect of the addition of different natural waxes on the mechanical and rheological behavior of PLA: a comparative study[J]. Polymers, 2023.DOI: 10.3390/POLYM15020305.
JU Zehui, BROSSE Nicolas, HOPPE Sandrine, et al. Thermal and mechanical properties of polyethylene glycol (PEG)-modified lignin/polylactic acid (PLA) biocomposites[J]. International Journal of Biological Macromolecules, 2024.DOI: 10.1016/J.IJBIOMAC.2024.129997.
[21] ZHANG Li, XU Jian, HU Zhiqing, et al. Antireflective superhydrophobic and robust coating based on chitin nanofibers and methylsilanized silica for outdoor applications[J]. ACS Applied Materials & Interfaces, 2024.DOI: 10.1021/ACSAMI.4C05778.
[1] 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179.
[2] 王容容, 周洲, 冯祥, 申莹, 刘峰, 邢剑. 聚酯纤维与聚乙烯/聚丙烯双组分纤维多孔吸声材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 61-68.
[3] 张蕊, 叶苏娴, 王建, 邹专勇. 全织物型离电式柔性压力传感器的制备及其性能[J]. 纺织学报, 2025, 46(02): 113-121.
[4] 叶孔萌, 秦子轩, 康桂田, 李赛, 韩德孝, 张恒. 高密度聚乙烯超细纤维篷布的闪蒸-水刺法制备及其防水透湿性[J]. 纺织学报, 2025, 46(01): 25-33.
[5] 左红梅, 高敏, 阮芳涛, 邹梨花, 徐珍珍. MXene-氧化石墨烯改性碳纤维/聚乳酸复合材料制备及其力学性能[J]. 纺织学报, 2025, 46(01): 9-15.
[6] 肖鑫, 李伟, 卢润, 姜会钰, 李青. 等离子体协同过氧化氢活化体系对纯棉水刺非织造布的练漂处理[J]. 纺织学报, 2024, 45(12): 118-127.
[7] 夏梦, 成悦, 刘蓉, 李大伟, 付译鋆. 普鲁士蓝涂层非织造材料在细菌检测中的应用[J]. 纺织学报, 2024, 45(12): 166-171.
[8] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[9] 许秋歌, 郭寻, 朵永超, 吴若楠, 钱晓明, 宋兵, 符浩, 赵宝宝. 高收缩聚酯/聚酰胺6中空橘瓣型纺黏针刺非织造布的制备及其性能[J]. 纺织学报, 2024, 45(12): 41-49.
[10] 欧宗权, 于金超, 潘志娟. 光致变色聚乳酸/聚3-羟基丁酸酯共混纤维的纺制及其结构与性能[J]. 纺织学报, 2024, 45(12): 9-17.
[11] 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45.
[12] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
[13] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[14] 刘文龙, 李好义, 何东洋, 李长金, 张杨, 马秀清, 李满意, 杨卫民. 低密度聚乙烯熔喷工艺及其非织造布性能[J]. 纺织学报, 2024, 45(10): 31-38.
[15] 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145.
Viewed
Full text
31
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 16 0 0 15

  From Others local
  Times 12 19
  Rate 39% 61%

Abstract
62
Just accepted Online first Issue
0 0 62
  From Others local
  Times 36 26
  Rate 58% 42%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!