纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 170-179.doi: 10.13475/j.fzxb.20240805101

• 染整工程 • 上一篇    下一篇

共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能

李逢春1,2, 孙辉1,2(), 于斌1,2, 谢有秀1,2, 张德伟1,2   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心, 浙江 绍兴 312000
  • 收稿日期:2024-08-27 修回日期:2024-11-03 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 孙辉(1976—),女,副教授,博士。主要研究方向为纺织材料的功能化改性。E-mail:sunhui@zstu.edu.com
  • 作者简介:李逢春(2000—),男,硕士生。主要研究方向为非织造材料水处理应用的功能改性。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    浙江省自然科学基金项目(LTGS23E030005)

Preparation of covalent organic framework/viscose spunlaced nonwoven fabrics and adsorption properties for dyestuff

LI Fengchun1,2, SUN Hui1,2(), YU Bin1,2, XIE Youxiu1,2, ZHANG Dewei1,2   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
  • Received:2024-08-27 Revised:2024-11-03 Published:2025-02-15 Online:2025-03-04

摘要:

为制备用于有机染料废水处理的粘胶水刺非织造布(VSN),用稀盐酸对VSN进行预处理后,以1,3,5-三(4-氨基苯基)苯(TAP)和2,6-吡啶二甲醛(DFP)为原料、以乙腈为溶剂、以乙酸为催化剂的条件下进行溶剂热反应,在VSN表面原位合成共价有机框架材料(Pyridine-COF),得到共价有机框架材料/粘胶水刺非织造布(Pyridine-COF/VSN)。借助扫描电子显微镜、红外光谱仪和X射线光电子能谱仪分别表征了Pyridine-COF/VSN的外观形貌、化学结构和元素组成,并测试了其吸附性能、循环使用性能和力学性能。结果表明:Pyridine-COF在VSN纤维表面呈球形结构,粒径为400 nm左右;且制得的Pyridine-COF/VSN对水中阳离子染料亚甲基蓝和罗丹明B(MB和RhB)以及阴离子染料刚果红和甲基橙(CR和MO)均有一定的吸附能力,其中对RhB吸附效率最高,在染液初始质量浓度为20 mg/L、吸附温度为25 ℃、吸附溶液pH值为7的条件下,Pyridine-COF/VSN对RhB的吸附效率可达98.06%,吸附平衡时间为120 min;Pyridine-COF/VSN具有重复吸附使用性能,经6次循环使用后对RhB的吸附效率可保持在64.60%左右;相比于VSN,Pyridine-COF/VSN的拉伸强度有所下降,而断裂伸长率有所提高。

关键词: 共价有机框架材料, 粘胶水刺非织造布, 吸附性能, 吸附机制, 染料废水, 废水处理

Abstract:

Objective Viscose spunlaced nonwoven fabrics (VSN) are a kind of nonwoven material prepared by spunlacing regenerated cellulose fibers and have the advantages of high strength and abrasion resistance, good air permeability and water wettability, and environmental friendliness and recyclability. Due to a large specific surface area and abundant reactive groups on the macromolecular chain, VSN has the potential to be used in the wastewater treatment field. However, in the face of complex water pollution system, VSN itself is difficult to achieve the efficient adsorption of organic dyes in water. It is necessary for VSN to be functionally modified for high adsorption of organic dyestuffs. Covalent organic frameworks (COFs) possess the advantages of high porosity, low density, customizable structural design, precise pore size, ease of functionalization, and excellent chemical stability, and have great potential as adsorbents for pollutant removal in water. Therefore, the functional modification of VSN using COFs is expected not only to enhance the organic dyestuffs adsorption efficiency of VSN, but also realize the effective recovery and recycling of COFs.

Method VSN was first pretreated with dilute hydrochloric acid. Pyridine-COF was then synthesized on the surface of VSN by in-situ solvothermal method using 1, 3, 5-tris(4-aminophenyl)benzene (TAP) and 2, 6-pyridinedicarboxaldehyde (DFP) as raw materials, and acetic acid as catalyst, obtaining Pyridine-COF/VSN. The morphology and structure of Pyridine-COF/VSN were studied, and the adsorption properties of organic dyestuffs were analyzed. Furthermore, the adsorption mechanism was explored by the adsorption kinetics and thermodynamics.

Results After in-situ solvothermal synthesis, Pyridine-COF uniformly covered the surface of the viscose fibers, showing a complete and regular spherical structure with a particle size of about 400 nm. In the FT-IR spectra of Pyridine-COF/VSN, the characteristic peaks of C=N of COF appeared besides the characteristic peaks attributed to VSN. The XPS spectra of Pyridine-COF/VSN showed that three peaks attributed to C, O, and N elements. The nuclear energy level N1s of Pyridine-COF/VSN were fitted, two peaks at 399.15 eV and 399.6 eV attributed to pyridine N (Pyridine-N) and —C—N=C. These phenomena verified that Pyridine-COF has been fixed on the surface of VSN. Compared with VSN, Pyridine-COF/ VSN showed a significant improvement in the adsorption efficiency of RhB in water. Pyridine-COF/VSN had adsorption capacity for both cationic organic dyestuffs including methylene blue (MB) and rhodamine (RhB) and anionic organic dyestuffs including congo red (CR) and methyl orange (MO). When the adsorption temperature was 25 ℃ and the pH of adsorption solution was 7, the adsorption efficiency of Pyridine-COF/VSN for RhB reached maximum, and was 98.06%, and the adsorption equilibrium time was 120 min. Compared with the quasi-primary kinetic model, the quasi-secondary kinetic model could better fit the adsorption process of Pyridine-COF/VSN for RhB, indicating that the whole adsorption process was mainly controlled by the chemical adsorption mechanism. The result from adsorption thermodynamics indicated that the adsorption process of Pyridine-COF/VSN for RhB was endothermic and spontaneous process. After six cycles, the adsorption efficiency of Pyridine-COF/VSN for RhB was still 64.60%. Compared with VSN, the tensile strength of the fabricated Pyridine-COF/VSN decreased, but the elongation at break increased.

Conclusion Compared with VSN, Pyridine-COF has outstanding adsorption for organic dyestuffs in water, and good reusable performance. When the adsorption temperature was 25 ℃ and the pH of adsorption solution was 7, the adsorption efficiency of Pyridine-COF/VSN for RhB was 98.06%. After six cycles, the adsorption efficiency of Pyridine-COF/VSN for RhB still kept 64.60%. It is hoped that our studies can expand the application of VSN on water treatment, and may provide some theoretical references for the preparation of nonwoven materials with high adsorption property.

Key words: covalent organic framework, viscose spunlaced nonwoven material, adsorption property, adsorption mechanism, dyestuff wastewater, wastewater treatment

中图分类号: 

  • TS176

图1

Pyridine-COF/VSN的制备流程图和 Pyridine-COF的合成机制"

图2

预处理前后VSN和Pyridine-COF/VSN的SEM照片及Pyridine-COF/VSN的元素映射图"

图3

VSN,Pyridine-COF/VSN及Pyridine-COF的红外光谱图"

图4

VSN及Pyridine-COF/VSN的XPS谱图和Pyridine-COF/VSN的N 1s谱图"

图5

VSN及Pyridine-COF/VSN对RhB染料的吸附效率"

图6

Pyridine-COF/VSN对4种有机染料的吸附效率"

图7

不同RhB初始质量浓度下Pyridine-COF/VSN的吸附效率"

图8

不同pH值下Pyridine-COF/VSN对RhB的吸附效率"

图9

不同吸附温度下Pyridine-COF/VSN对RhB的吸附效率"

图10

Pyridine-COF/VSN对RhB吸附的动力学拟合曲线"

图11

Pyridine-COF/VSN对RhB吸附的热力学拟合曲线"

表1

Pyridine-COF/VSN在不同温度下对RhB的吸附热力学参数"

ΔHθ/
(kJ·mol-1)
ΔSθ/
(J·mol-1·K-1)
ΔGθ/(kJ·mol-1)
298 K 303 K 308 K 313 K
101.32 356.72 -4.98 -6.77 -8.55 -10.33

表2

Pyridine-COF/VSN对RhB的重复吸附效率"

循环次数 1 2 3 4 5 6
吸附效率/% 98.06 97.08 95.94 89.58 81.86 64.60

图12

预处理前后VSN和Pyridine-COF/VSN的应力-应变曲线"

[1] GHORAI S, SARKAR A, RAOUFI M, et al. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica[J]. Applied Materials & Interfaces, 2014, 6(7): 4766-4777.
[2] LIU G, XU S, LI W, et al. Preparation of three-dimensional porous spherical TiO2@g-C3N4 composites and visible light catalytic degradation on organic dyes[J]. Journal of Solid State Chemistry, 2023. DOI: 10.1016/j.jssc.2023.124223.
[3] WANG X, JIANG C, HOU B, et al. Carbon composite lignin-based adsorbents for the adsorption of dyes[J]. Chemosphere, 2018, 206: 587-596.
doi: S0045-6535(18)30837-3 pmid: 29778084
[4] 黄彪, 郑莉娜, 秦妍, 等. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175.
doi: 10.13475/j.fzxb.20221103501
HUANG biao, ZHENG Li'na, QIN Yan, et al. Preparation of porous TiO2 particles and their adsorption for ionic dyes[J]. Journal of Textile Research, 2023, 44(11): 167-175.
doi: 10.13475/j.fzxb.20221103501
[5] MA J, YU F, ZHOU L, et al. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes[J]. Applied Materials & Interfaces, 2012, 4(11): 5749-5760.
[6] HUSSAIN Z, CHANG N, SUN J, et al. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes[J]. Journal of Hazardous Materials, 2022. DOI: 10.1016/j.jhazmat.2021.126778.
[7] RUAN C, MA Y, SHI G, et al. Self-assembly cellulose nanocrystals/SiO2 composite aerogel under freeze-drying: adsorption towards dye contaminant[J]. Applied Surface Science, 2022. DOI: 10.1016/j.apsusc.2022.153280.
[8] ABDELHAMID H N, MATHEW A P. Cellulose-metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted applications: a review[J]. Coordination Chemistry Reviews, 2022. DOI: 10.1016/j.ccr.2021.214263.
[9] KULDEYEV E, SEITZHANOVA M, TANIRBERGENOVA S, et al. Modifying natural zeolites to improve heavy metal adsorption[J]. Water, 2023. DOI: 10.3390/w15122215.
[10] JUAN Z, YONGKE Z, YAPING Z, et al. Influence of the acid groups on activated carbon on the adsorption of bilirubin[J]. Materials Chemistry and Physics, 2021. DOI: 10.1016/j.matchemphys.2020.124133.
[11] LUO X P, FU S Y, DU Y M, et al. Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101[J]. Microporous and Mesoporous Materials, 2017, 237: 268-274.
[12] JEJURKAR V P, YASHWANTRAO G, SAHA S. Tröger's base functionalized recyclable porous covalent organic polymer (COP) for dye adsorption from water[J]. New Journal of Chemistry, 2020, 44(28): 12331-12342.
[13] GONG Y N, GUAN X, JIANG H L. Covalent organic frameworks for photocatalysis: synthesis, structural features, fundamentals and performance[J]. Coordination Chemistry Reviews, 2023. DOI: 10.1016/j.ccr.2022.214889.
[14] GENG K, HE T, LIU R, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933.
doi: 10.1021/acs.chemrev.9b00550 pmid: 31967791
[15] SEGURA J L, ROYUELA S, MAR RAMOS M. Post-synthetic modification of covalent organic frame-works[J]. Chemical Society Reviews, 2019, 48(14): 3903-3945.
[16] DA SILVA V D, ZALEWSKA K, PETROVSKI Z, et al. Covalent organic frameworks as promising materials for the removal of metal and organic pollutants from water[J]. Materials Today Sustainability, 2023. DOI: 10.1016/j.mtsust.2022.100279.
[17] DEY K, PAL M, ROUT K C, et al. Selective Molecular Separation by interfacially crystallized covalent organic framework thin films[J]. Journal of The American Chemical Society, 2017, 139(37): 13083-13091.
doi: 10.1021/jacs.7b06640 pmid: 28876060
[18] KARAK S, DEY K, TORRIS A, et al. Inducing disorder in order: hierarchically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants[J]. Journal of The American Chemical Society, 2019, 141(18): 7572-7581.
doi: 10.1021/jacs.9b02706 pmid: 31017396
[19] FU Q, ZHANG T, SUN X, et al. Pyridine-based covalent organic framework for efficient and selective removal of Hg(II) from water: adsorption behavior and adsorption mechanism investigations[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2022.140154.
[20] REHAN M, MOWAFI S, ABDELMOEZ ALY S, et al. Microwave-heating for in-situ AgNPs preparation into viscose fibers[J]. European Polymer Journal, 2017, 86: 68-84.
[21] CIESLAK M, KOWALCZYK D, BARANOWSKA-KORCZYC A, et al. Viscose nonwoven fabric with copper and its multifunctional properties[J]. Cellulose, 2023, 30(15): 9843-9859.
[22] BENYETTOU F, DAS G, NAIR A R, et al. Covalent organic framework embedded with magnetic nanoparticles for MRI and chemo-thermotherapy[J]. Journal of The American Chemical Society, 2020, 142(44): 18782-18794.
doi: 10.1021/jacs.0c05381 pmid: 33090806
[23] DING S Y, GAO J, WANG Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki-miyaura coupling reaction[J]. Journal of The American Chemical Society, 2011, 133(49): 19816-19822.
[24] SAKTHIVEL R, KULANDAIVEL T, VENKATESAN SAVUNTHARI K, et al. Rapid oil-water separation using modified nonwoven viscose fabrics[J]. Materials Chemistry and Physics, 2024. DOI: 10.1016/j.matchemphys.2023.128645.
[25] IP A W M, BARFORD J P, MCKAY G. Reactive black dye adsorption/desorption onto different adsorbents: effect of salt, surface chemistry, pore size and surface area[J]. Journal of Colloid and Interface Science, 2009, 337(1): 32-38.
doi: 10.1016/j.jcis.2009.05.015 pmid: 19523648
[26] MA Z, LIU F, LIU N, et al. Facile synthesis of sulfhydryl modified covalent organic frameworks for high efficient Hg(II) removal from water[J]. Journal of Hazardous Materials, 2021. DOI: 10.1016/j.jhazmat.2020.124190.
[27] 赵红丽, 琚行松, 和芹, 等. 纳米MoO2@MoS2的制备及其对RhB的高吸附性能[J]. 南开大学学报(自然科学版), 2023, 56(6): 85-93.
ZHAO Hongli, JU Xingsong, HE Qin, et al. Preparation of nano MoO2@MoS2 and its high adsorption performance for RhB[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2023, 56(6): 85-93.
[28] OROZCO S, MONTIEL E, VALENCIA J E, et al. Effective RhB dye removal using sustainable natural bioadsorbents synthesized from avocado seed and skin[J]. Water, Air, & Soil Pollution, 2024. DOI: 10.1007/s11270-024-06952-6.
[29] FAN H, MA Y, WAN J, et al. Removal of gentian violet and rhodamine B using banyan aerial roots after modification and mechanism studies of differential adsorption behaviors[J]. Environmental Science and Pollution Research, 2020, 27(9): 9152-9166.
[30] CHANG K, HUANG H, MENG Y, et al. Synthesis of a pyridine-based covalent organic framework as an efficient adsorbent for rhodamine B removal[J]. RSC Advances, 2023, 13(34): 23682-23690.
doi: 10.1039/d3ra04184k pmid: 37555096
[31] FAN S, WANG Y, WANG Z, et al. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 601-611.
[32] TANG X, ZHANG Q, LIU Z, et al. Removal of Cu(II) by loofah fibers as a natural and low-cost adsorbent from aqueous solutions[J]. Journal of Molecular Liquids, 2014, 199: 401-407.
[33] CHANG Y H, LIN C L, HSU Y H, et al. Medium effect on acid degradation of cotton and wood cellu-loses[J]. Industrial Crops and Products, 2021. DOI: 10.1016/j.indcrop.2021.113540.
[1] 李万新, 舒大武, 安芳芳, 韩博, 任支刚, 单巨川. 碳化钛与三价铁离子协同过硫酸钠对活性染料废水的降解[J]. 纺织学报, 2025, 46(01): 138-147.
[2] 杨亮, 孔韩韩, 李韦霖, 祁小芬, 张天芸, 王雪梅, 李文全. 沸石咪唑酯骨架-8的制备及其对刚果红的吸附性能[J]. 纺织学报, 2024, 45(07): 140-149.
[3] 武守营, 黄启超, 张开封, 张琳萍, 钟毅, 徐红, 毛志平. 铁-三联吡啶配合物活化高碘酸盐体系构建及其对染色废水的催化降解机制[J]. 纺织学报, 2024, 45(06): 105-112.
[4] 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227.
[5] 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112.
[6] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[7] 李方, 张怡立, 王曼, 孟祥周, 沈忱思. 锑污染物对绿藻及蓝藻的急性毒性效应[J]. 纺织学报, 2024, 45(04): 169-179.
[8] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[9] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
[10] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[11] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
[12] 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31.
[13] 付玮康, 郭筱洁, 潘孟涛, 宋聚滟, 奚柏君. 柳絮纤维生物质炭的制备及其对染料废液中Cr(Ⅵ)的吸附性能[J]. 纺织学报, 2022, 43(12): 8-15.
[14] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[15] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
Viewed
Full text
21
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 4 0 0 17

  From Others local
  Times 10 11
  Rate 48% 52%

Abstract
50
Just accepted Online first Issue
0 0 50
  From Others local
  Times 40 10
  Rate 80% 20%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!