纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 180-187.doi: 10.13475/j.fzxb.20240902401

• 染整工程 • 上一篇    下一篇

磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性

张洁1,2, 郭鑫源1,2, 关晋平1,2(), 程献伟1,2, 陈国强1,2   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.苏州大学 纺织行业纺织材料阻燃整理重点实验室, 江苏 苏州 215021
  • 收稿日期:2024-09-29 修回日期:2024-10-31 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 关晋平(1976—),女,教授,博士。主要研究方向为纺织品阻燃科学研究、纺织品可持续染整技术。E-mail:guanjinping@suda.edu.cn
  • 作者简介:张洁(2000—),女,硕士生。主要研究方向为涤纶/棉混纺织物的耐久阻燃改性。
    第一联系人:

    说 明:本文入围中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    苏州市产业前瞻与关键核心技术项目(SYC2022017);国家自然科学基金项目(22408247)

Modification of cotton fabric by in-situ deposition of phosphorus/nitrogen flame retardants for durable flame retardancy

ZHANG Jie1,2, GUO Xinyuan1,2, GUAN Jinping1,2(), CHENG Xianwei1,2, CHEN Guoqiang1,2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2024-09-29 Revised:2024-10-31 Published:2025-02-15 Online:2025-03-04

摘要:

针对棉织物极易燃烧,引燃后火焰迅速蔓延的问题,采用四羟甲基硫酸磷、双氰胺和环状磷酸酯阻燃剂FRC-1进行缩聚反应,通过原位沉积的方法对棉织物进行改性以提高其阻燃性能。对改性棉织物的结构特征、燃烧行为、阻燃性能、耐水洗性能和阻燃机制等进行研究。结果表明:改性棉织物具有优异的阻燃性能和耐水洗性能,其损毁长度降至7.5 cm,极限氧指数升高至29.7%,经50次洗涤后改性棉织物仍能自熄,损毁长度为11.0 cm,极限氧指数为26.4%;改性棉织物的热释放速率峰值仅为41.6 kW/m2,下降了86.9%;在燃烧过程中,缩聚产物中的含磷阻燃基团早期裂解促进了棉织物的脱水和炭化,并形成了石墨化程度很高的炭层,有效地隔绝了氧气和热量;同时磷基自由基的猝灭效应也有利于阻燃性能的提高,因此阻燃剂在固相和气相均起到阻燃功能;此外,原位沉积改性对棉织物的强力性能影响较小。

关键词: 棉织物, 阻燃性能, 耐久性, 磷/氮阻燃剂, 阻燃织物, 功能纺织品

Abstract:

Objective Cotton fabrics are known for their softness, wearing comfort, moisture absorption and breathability, and are widely used in clothing, decoration, construction and other fields. However, cotton fabrics would burn rapidly and the burning is accompanied by obvious phenomena of secondary ignition and shadow ignition, which needs improving for the fire safety of cotton fabrics. Proban technology is known to offer flame retardant durability, low cost and minimal impact on mechanical properties to cotton fabrics, but it is limited by the complex ammonia fumigation process, which largely restricts its application.

Method Different concentrations of tetrakis(hydroxymethyl)phosphonium sulfate (THPS), dicyandiamide (DCD), and cyclic phosphate ester flame-retardant FRC-1 were used to prepare the solution at 80 ℃ oscillation for 10 min. The cotton fabrics were immersed in the solution for impregnation for 10 min, followed by two further immersion and two rolling processes. The rolling rate was 100%, and the fabric was then dried at 80 ℃ for 3 min, then baked at 150 ℃ for 3 min. THPS was used to form amine macromolecules with anionic FRC-1 electrostatic interaction, aiming to form more complex condensation products within the fibers. The complex condensation products were formed within the fiber to enable the cotton fabrics with efficient and durable flame-retardant properties.

Results Experiment showed that the cotton fabric burned fiercely with obvious continuation of combustion and the phenomenon of negative combustion. The length of damage was 30 cm, and the LOI value was only 18.6%. After the flame-retardant finishing, the flame retardancy of the modified cotton fabric was improved, and the flame was self-extinguished within 6 s, and the length of damage was reduced to 7.5 cm, and the LOI reached 29.7%, when the concentration of FRC-1 was 80 g/L and the concentration of THPS was 100 g/L. The modified cotton fabric exhibited good self-extinguishing performance after 50 times of home washing, when the destruction length was 11.0 cm, and the LOI was 26.4%. These still satisfy the performance requirements for grade B1 according to GB/T 17591—2006 Flame-retardant Fabrics. The heat release rate and total heat release of the modified cotton fabrics were greatly reduced, indicating that the flame-retardant coating obviously inhibited the heat release performance of cotton fabrics, and the fire hazard of modified cotton fabrics was reduced. The early decomposition of phosphorus-containing compound in the heating process promoted dehydration and charring of cotton fabrics. The modified fabrics showed high thermal stability with the formation of more residual carbon under high-temperature conditions, leaving a char layer with high degree of graphitization, effectively isolating oxygen and heat. In the combustion process, a large number of non-combustible volatile substances were produced, diluting the concentration of flammable gases, and the quenching effect of the phosphorus radical was also beneficial for improving flame retardancy. It is evident that the phosphorus-containing flame-retardant groups in the polycondensation products played a flame-retardant role in the solid phase and gas phase. The physical properties of the modified cotton fabrics did not change significantly and did not affect their subsequent use.

Conclusion The condensation product of tetrakis(hydroxymethyl)phosphine sulphate, dicyandiamide and the cyclic phosphate ester FRC-1 shows a high level of flame retardancy on cotton fabrics. Even after 50 home washing cycles, the modified cotton fabrics were able to pass the vertical flame test and meet the requirements of Class B1. Thermal analysis, thermogravimetric infrared analysis, cone calorimetry, carbon residue analysis and physical property analysis showed that the phosphorus-containing polycondensates effectively improved the flame retardancy of the modified cotton fabrics through the mechanism of solid-phase and gas-phase flame retardancy. In conclusion, phosphorus-containing polycondensates have a great potential to be used as a sustainable and effective flame-retardant method for modified cotton fabrics.

Key words: cotton fabric, flame retardancy, washing durability, nitrogen/phosphorus flame retardant, flame reardamts fabric, functional textile

中图分类号: 

  • TS156

图1

不溶白色沉淀物的照片"

图2

棉织物的红外光谱"

图3

改性棉织物的阻燃耐久性能"

图4

棉织物的热稳定性能"

图5

棉织物在氮气和空气环境下的TG和DTG曲线"

表1

改性棉织物的热降解数据"

气体
氛围
织物 T5% /
Tmax1/
Tmax2/
700 ℃时的
残炭量/%
氮气 棉织物 234 360 7.80
改性棉织物 223 305 39.00
空气 棉织物 229 350 451 0.15
改性棉织物 222 299 500 15.80

图6

氮气氛围下棉织物和改性棉织物的红外光谱图"

图7

在不同温度下煅烧的棉织物的数码照片"

图8

在不同温度下煅烧的棉织物和改性棉织物残炭的红外光谱"

图9

在500 ℃下煅烧原棉织物和改性棉织物残炭的拉曼光谱"

表2

棉织物物理力学性能"

织物 断裂强力/N 断裂伸长率/% 白度/%
原棉织物 256.9±6.6 4.60±0.17 88.8±0.3
改性棉织物 254.7±9.6 4.46±0.20 88.4±1.5
[1] KANG M M, HE X, CUI J, et al. Aldehyde-free and bio-based durable coatings for cellulose fabrics with high flame retardancy, antibacteria and well wearing performance[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2023.128744.
[2] 钱耀威, 殷连博, 李家炜, 等. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(9): 144-152.
QIAN Yaowei, YIN Lianbo, LI Jiawei, et al. Preparation and properties of self-assembled flame retardant cotton fabric with polyvinylphosphonic acid/ polyethylenepolyamine layer[J]. Journal of Textile Research, 2023, 44(9): 144-152.
[3] 马亚男, 沈军炎, 骆晓蕾, 等. 高效无卤阻燃棉织物的制备及其结构与性能[J]. 纺织学报, 2021, 42(3): 122-129.
MA Yanan, SHEN Junyan, LUO Xiaolei, et al. Preparation and structure and properties of high-efficiency halogen-free flame retardant cotton fabric[J]. Journal of Textile Research, 2021, 42(3): 122-129.
[4] 张光先, 黄天栋. 棉用新型耐久膦酸酯铵阻燃剂[J]. 印染助剂, 2023, 40(11): 10-16.
ZHANG Guangxian, HUANG Tiandong. New durable phosphonate ammonium flame retardant for cotton[J]. Printing and Dyeing Auxiliaries, 2023, 40(11): 10-16.
[5] CHEN X, DING F, HOU X, et al. Novel efficient flame-retardant, smoke suppression and antibacterial treatment for cotton fabrics by surface graft copolymerization[J]. Cellulose, 2024, 31:9487-9502.
[6] 李旭, 刘祥吉, 靳鑫, 等. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(7): 121-129.
LI Xu, LIU Xiangji, JIN Xin, et al. Preparation of durable and high-efficiency phosphorus/nitrogen synergistic flame retardant and its application in cotton fabrics[J]. Journal of Textile Research, 2024, 45(7): 121-129.
[7] SZYMANSK A, PRZYBYLAK M, DUTKIEWICZ M, et al. Synthesis of phosphorus, sulfur and silicon-containing flame retardant via thiol-ene click reaction and its use for durable finishing of cotton fabric[J]. Scientific Reports, 2024. DOI: 10.1038/s41598-024-71071-5.
[8] TU J, XIE S, ZHAO Q, et al. Reactive P/S/N-containing synergistic flame retardant towards eco-friendly durable flame-retardant cotton fabric: flame-retardant property, durability and mechanism[J]. Polymer Testing, 2023. DOI: 10.1016/j.polymertesting.2022.107918.
[9] KANG M, WANG G, LIU W, et al. Fabrication of highly flame-retardant paper by in situ loading of magnesium hydroxide/basic magnesium chloride onto cellulose fibers[J]. Cellulose, 2023, 30(11): 7295-7312.
[10] 邱一民, 吴磊, 靳云平. 棉织物无甲醛耐日晒阻燃剂NS-ZR-007整理工艺研究[J]. 印染助剂, 2023, 40(11): 41-44, 56.
QIU Yimin, WU Lei, JIN Yunping. Research on finishing process of formaldehyde-free flame retardant NS-ZR-007 for cotton fabrics[J]. Printing and Dyeing Auxiliaries, 2023, 40 (11): 41-44, 56.
[11] DIAO S, YANG Y, TANG Q, et al. Improvement of traditional proban flame retardant finishing technology for cotton fabric[J]. Cellulose, 2023, 30(9): 6051-6063.
[12] FU S, LI H, JIANG Y, et al. Under-oil superhydrophilic and flame-retardant fabrics for water removal from oil[J]. Fibers and Polymers, 2023, 24(8): 2743-2750.
[13] ZHAO B, KOKLIBABA T J, LAZAR S, et al. Environmentally-benign, water-based covalent polymer network for flame retardant cotton[J]. Cellulose, 2021, 28: 5855-5866.
[14] CHEN X, DING F, HOU X, et al. Halloysite-based inorganic-organic hybrid coatings for durable flame retardant, hydrophobic and antibacterial properties of cotton fabrics[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.134357.
[15] PAN X, LIU J, GUO X, et al. Synthesis and analysis of a novel phospho-nitrile flame retardant for cotton fabric[J]. Materials Today Communications, 2024. DOI:10.1016/j.mtcomm.2024.109350.
[16] LU Y F, ZHAO P Y, CHEN Y J, et al. A novel polymer reactive flame retardant for the preparation of highly durable cotton fabrics[J]. International Journal of Biological Macromolecules, 2022, 223: 1394-1404.
doi: 10.1016/j.ijbiomac.2022.11.033 pmid: 36356873
[17] LIU W, LIU S, MA J, et al. Investigation on UV/flame retardant protection of outdoor-applied cotton fabrics by tannic acid/phytic acid system[J]. Journal of Applied Polymer Science, 2024. DOI: 10.1002/app.55911.
[18] ORZAN E, BARRIO A, SPIRK S, et al. Elucidation of cellulose phosphorylation with phytic acid[J]. Industrial Crops and Products, 2024. DOI: 10.1016/j.indcrop.2024.118858.
[19] LI J, ZHANG G, ZHANG F. Phosphamide-based washing-durable flame retardant for cotton fabrics[J]. Materials, 2024. DOI: 10.3390/ma17030630.
[1] 郭庆, 毛阳顺, 任亚杰, 刘济民, 王怀芳, 朱平. 基于漆酶一步催化法的羊毛织物原位染色及阻燃功能化[J]. 纺织学报, 2025, 46(02): 161-169.
[2] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[3] 袁华彬, 王沂沨, 王家朋, 向永翾, 陈国强, 邢铁玲. 基于山嵛酸和ZIF-8改性的超疏水防结冰棉织物[J]. 纺织学报, 2025, 46(02): 197-206.
[4] 李鑫, 叶培培, 赵晓曼, 王鸿博, 杨国荣, 洪剑寒. 氧化铋-硅橡胶基X射线防护织物的制备及性能[J]. 纺织学报, 2025, 46(02): 227-235.
[5] 旋湘桃, 张辉, 车秋玲, 魏乾阳, 张劲峰, 王毅. 自清洁织物的研究进展[J]. 纺织学报, 2025, 46(01): 227-237.
[6] 巢探宇, 叶韵, 李娜, 廖思含, 马琪凯, 崔莉. 基于脂肪酶固定化的棉织物易去油污整理及其应用[J]. 纺织学报, 2025, 46(01): 130-137.
[7] 肖鑫, 李伟, 卢润, 姜会钰, 李青. 等离子体协同过氧化氢活化体系对纯棉水刺非织造布的练漂处理[J]. 纺织学报, 2024, 45(12): 118-127.
[8] 武浩, 周嫦娥, 高振清, 冯嘉禾. 基于还原-氧化体系的活性染料染色棉织物剥色[J]. 纺织学报, 2024, 45(12): 128-136.
[9] 关玉, 王冬, 郭一凡, 付少海. MoS2/MXene阻燃气敏棉织物的制备及其性能[J]. 纺织学报, 2024, 45(12): 159-165.
[10] 王心雨, 郭明明, 张乐乐, 郑伟杰, AMJAD Farooq, 王宗乾. 耐久性抗菌超疏水棉织物的制备及其性能[J]. 纺织学报, 2024, 45(11): 170-177.
[11] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[12] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[13] 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128.
[14] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[15] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
Viewed
Full text
21
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 4 0 0 17

  From Others local
  Times 13 8
  Rate 62% 38%

Abstract
52
Just accepted Online first Issue
0 0 52
  From Others local
  Times 46 6
  Rate 88% 12%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!