纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 130-137.doi: 10.13475/j.fzxb.20240903801

• 染整工程 • 上一篇    下一篇

生物基锦纶56弱酸性染料仿绿色植被染色

罗巧玲1,2, 付少海1,2(), 王冬1,2, 王美慧3, 郭亚飞3, 郝新敏3   

  1. 1.江苏省纺织品数字喷墨印花工程技术研究中心, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    3.军事科学院 系统工程研究院, 北京 100010
  • 收稿日期:2024-09-23 修回日期:2024-11-05 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 付少海(1972—),男,教授,博士。主要研究方向为生态染整技术。E-mail:shaohaifu@jiangnan.edu.cn
  • 作者简介:罗巧玲(1996—),女,硕士生。主要研究方向为功能纺织品。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    军委装备发展部-教育部联合基金创新团队项目(8091B042115);江苏省基础研究计划自然科学基金-青年基金项目(BK20221093)

Dyeing of bio-based polyamide 56 with weak acidic dyes for green vegetation imitation

LUO Qiaoling1,2, FU Shaohai1,2(), WANG Dong1,2, WANG Meihui3, GUO Yafei3, HAO Xinmin3   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    3. System Engineering Research Institute, Chinese Academy of Military Sciences, Beijing 100010, China
  • Received:2024-09-23 Revised:2024-11-05 Published:2025-02-15 Online:2025-03-04

摘要:

为模拟绿色植被的光谱反射特征和颜色,利用C.I.酸性黄199、C.I.酸性蓝324、C.I.酸性蓝185染料对生物基锦纶56进行染色,研究了染色工艺、染料用量和复配比对染色织物反射光谱曲线(400~1 200 nm)的影响,开发了仿绿色植被的浅绿、中绿和深绿染料体系,分析了染色织物的光谱模拟效果。结果表明:在60 ℃恒温染色保温40 min的条件下,C.I.酸性黄199、C.I.酸性蓝185和C.I.酸性蓝324的配伍性好,上染率接近100%;黄色染料影响“绿峰”,蓝色染料影响“红边”,染料用量增大,红移量变大,有利于“绿峰”和“红边”红移;复配染色织物在400~1 200 nm范围内的光谱反射率曲线与标准植被反射曲线之间的光谱距离均小于1.3、光谱角度均小于0.1 rad,光谱相关系数均达到0.987以上,满足GJB 1411A—2015《地地导弹武器装备系统伪装要求》二级光学伪装和二级光谱伪装的要求;其颜色模拟符合GJB 1082A—2021《伪装网用颜色》对伪装网颜色DG0850、MG1048、YG1550色差小于3的要求,且织物各项色牢度良好。

关键词: 仿绿色植被, 生物基锦纶56, 酸性染料, 光谱模拟, 染料复配, 绿色伪装, 可见光-近红外伪装

Abstract:

Objective Imitating the color and spectral reflection characteristics of green vegetation contributes to the military camouflage. Bio-based polyamide 56 has many merits such as high strength, wear resistance, good chromaticity, lightweight and softness. In this research, a bio-based polyamide 56 fabric was dyed in green color to simulate spectral characteristics of vegetation by using acid dyes.

Method In this work, weak acid dye compounds were used to dye the bio-based polyamide 56 fabric to simulate the color and spectral reflection of green vegetation by adjusting the ratio of C.I.Acid Yellow 199, C.I. Acid Blue 324 and C.I.Acid Blue 185. The influence of dyeing, dyes dosage, and blending on spectral reflectance curve from 400 to 1200 nm of dyed fabric were studied. The spectral distance, angle and correlation of the spectral reflectance curves of dyed fabrics were calculated against the standard curves of green vegetation. The fabric color difference and fastness were also measured.

Results When adopting the room temperature dyeing-controlled heating method dying process, C.I. Acid yellow 199, C.I. Acid Blue 324 and C.I. Acid Blue 185 demonstrated a high dyeing rate and yield, and poor compatibility. When adopting the homo-thermal constant temperature dyeing method with 60 ℃ temperature, the compatibility of the dyes was improved. It was revealed that the higher was the dye concentration, the greater was the redshift of the spectral reflection curve. C.I. Acid Yellow 199 has a low reflectivity between 380 and 450 nm, which could be used to simulate the absorption of ultraviolet and visible light by green vegetation, and form a "green peak" at 550 nm during mixed dyeing. The "red edge" of C.I. Acid Blue 324 is at 630 nm, which shows bule shift 50 nm from the green vegetation. C.I.Acid Blue 185 has a strong absorption peak near 680 nm, and the weak absorption peaks around 880 nm and 960 nm without overlapping with water peaks of green vegetation. Therefore, C.I.Acid Blue 185 was used to simulate the "red edge" of green vegetation. The mixture of any two dyes failed to fully simulate the spectral reflectance curve of green vegetation, but that of three dyes was proved successful in simulating the green color with the reflective characteristics. In the spectral reflectance curves of three-dye mixture, a reflection peak was identified at 530 nm, and the "red edge" started from 675 nm. Moreover, the impurity peak at 630 nm was found absorbed by C.I. Acidic Blue 324 with a maximum absorption wavelength of 630 nm. The obtained spectral reflectance curve was relatively similar to that of green vegetation. By further adjusting the dye ratio, the spectral reflectance curve was found closer to that of green leaves. The spectral distance of the dyed fabric and the standard green leaf curve was less than 1.3, the spectral angle was less than 0.1 rad, and the spectral correlation coefficient was close to 1. In the visible/near-infrared range of 400-1 200 nm, the spectral characteristics of green vegetation were accurately simulated, meeting the requirements of GJB 1411—2015. The color of the dyed fabric was simulated against the color of GBJ 1082A—2021 chromatogram DG0850, MG1048 and YG1550 to meet the requirement of color difference less than 3. The color fastness of the stained samples was found satisfactory.

Conclusion The dyeing process affects the dyeing rate and compatibility. When the dyeing process starts at 60 ℃, and holds at 60 ℃ for 40 min, the dyeing rate and compatibility are good. Yellow dyes affect the "green peak", and blue dyes affect the "red edge". C.I. Acid Blue 185 has an absorption peak of 675 nm, which can simulate the "red edge". As the dye concentration increases, the reflectance value decreases, and the spectral value shows a red shift. Dye compounding produces the deep color effect, reduces the reflection value and dye dosage. The dyed fabric meets the requirements of GJB 1411—2015 and GBJ 1082A—2021, which can be applied to military combat uniforms or camouflage nets.

Key words: green vegetation imitation, bio-based polyamide 56, acid dye, spectral simulation, dye compounding, green camouflage, visible-near infrared camouflage

中图分类号: 

  • TS190.2

图1

室温染色-控制升温法和恒温染色法的工艺曲线"

图2

室温染色-控制升温法的上染速率曲线"

图3

恒温染色法的上染速率曲线"

图4

C.I.酸性黄199不同用量的光谱反射率曲线"

图5

C.I.酸性蓝324不同用量的光谱反射率曲线"

图6

C.I.酸性蓝185不同用量的光谱反射率曲线"

图7

二拼色的光谱反射率曲线"

图8

二拼色与三拼色的光谱反射率曲线"

表1

不同仿绿色植被的染料配比"

染料名称 不同绿色的染料配比/(%(o.w.f))
浅绿 中绿 深绿
C.I.酸性黄199 0.3 0.5 0.75
C.I.酸性蓝324 0.15 0.25 0.40
C.I.酸性蓝185 0.05 0.15 0.20

图9

PA56染色织物的光谱反射率曲线与标准光谱曲线通道"

表2

PA56染色织物的光谱拟合度"

拼色组别 光谱距离d 相关系数r 光谱角度θ/rad
浅绿 1.21 0.987 0.006
中绿 1.01 0.991 0.059
深绿 0.96 0.992 0.063

表3

PA56染色织物的颜色相似度"

拼色组别 模拟颜色 色差ΔE
浅绿 YG1550 2.56
中绿 MG1048 2.52
深绿 DG0850 2.95

表4

Brade of color fastness of PA56 dyed fabric 级"

拼色
组别
耐日
晒色
牢度
耐皂洗
色牢度
耐汗渍
色牢度
耐摩擦
色牢度
氙弧
变色 棉沾
锦纶
沾色
羊毛
沾色
碱性
变色
酸性
变色
湿
浅绿 5~6 4 4~5 4 4~5 4~5 4~5 4~5 4~5
中绿 6 4 4 4 4 4~5 4~5 4~5 4~5
深绿 6 4 4~5 3~4 3~4 4~5 4~5 4~5 4
[1] 郑万里, 杨萍, 闫少强, 等. 军事伪装技术研究现状及发展趋势分析[J]. 现代防御技术, 2022, 50 (1): 81-86.
doi: 10.3969/j.issn.1009-086x.2022.01.012
ZHENG Wanli, YANG Ping, YAN Shaoqiang, et al. Analysis of the current research status and development trends of military camouflage technology[J] Modern Defense Technology, 2022, 50 (1): 81-86.
doi: 10.3969/j.issn.1009-086x.2022.01.012
[2] 祖梅, 鄢峰, 甘沅丰, 等. 模拟绿色植被光谱特征的高光谱伪装材料与技术研究进展[J]. 红外技术, 2022, 44(10):1018-1026.
ZU Mei, YAN Feng, GAN Yuanfeng, et al. Research progress on hyperspectral camouflage materials and techniques for simulating spectral characteristics of green vegetation[J]. Infrared Technology, 2022, 44 (10): 1018-1026.
[3] 吴晴晴, 李宁, 王吉军, 等. 基于叶绿素改性水凝胶的多波段伪装基础材料研究[J]. 防护工程, 2020, 42(6):24-30.
WU Qingqing, LI Ning, WANG Jijun, et al. Research on multi band camouflage basic materials based on chlorophyll modified hydrogel[J]. Protective Engineering, 2020, 42 (6): 24-30.
[4] 杨玲. 对LDHs模拟绿色植被近红外反射光谱及发射率的研究[D]. 南京: 南京航空航天大学, 2019:23-24.
YANG Ling. Research on LDHs simulating near infrared reflectance spectra and emissivity of green vegeta-tion[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019:23-24.
[5] LU Q, LI M, TIAN A, et al. Green plant leaf-inspired smart camouflage fabrics for visible light and near-infrared stealth[J]. Journal of Bionic Engineering, 2022, 19(3): 788-798.
[6] 张典典, 李敏, 关玉, 等. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(1):142-148.
ZHANG Diandian, LI Min, GUAN Yu, et al. Preparation and performance of disperse dye printed fabrics with characteristics of vegetation-like Vis-NIR reflectance spectrum[J]. Journal of Textile Research, 2023, 44(1): 142-148.
[7] HOSSAIN A. Spectral simulation and method design of camouflage textiles for concealment of hyperspectral imaging in UV-Vis-IR against multidimensional combat background[J]. Journal of The Textile Institute, 2022, 114(2): 331-342.
[8] TAVANAIE MA, ESMAEILIAN N, MOJTAHEDI M R M. Olive hue visible-near infrared camouflage properties of high speed melt spun poly (ethylene terephthalate) multifilament yarn[J]. Dyes and Pigments, 2015, 114: 267-272.
[9] SU Y, YU B, ZHAO X. Research status and development of infrared camouflage textile mate-rials[J]. Textile Research Journal, 2023, 93(21/22): 5047-5082.
[10] 胡传国, 刘宏东, 李蒙蒙, 等. 弱酸性染料在生物基纤维PA56上的染色理论研究[J]. 印染, 2021, 47(7):11-15,20.
HU Chuanguo, LIU Hongdong, LI Mengmeng, et al. Theoretical study on the dyeing of weakly acidic dyes on bio based fiber PA56[J]. China Dyeing & Finishing, 2021, 47 (7): 11-15,20.
[11] YANG H Y, IU W T. Bio-based polyamide 56: recent advances in basic and applied research[J]. Polymer Engineering & Science, 2023, 63(8): 2484-2497.
[12] LUO K M, LIU J X, ABBAY K, et al. The relationships between the structure and properties of PA56 and PA66 and their fibers[J]. Polymers, 2023, 15(13):1-13.
[13] 王建明, 李永锋, 郝新敏, 等. 生物基锦纶56和锦纶66的结构与吸放湿性能评价[J]. 纺织学报, 2021, 42(8): 1-7.
WANG Jianming, LI Yongfeng, HAO Xinmin, et al.. Study on structure and moisture absorption and liberation properties of bio-based polyamide 56 and poly-amide 66[J]. Journal of Textile Research, 2021, 42(8): 1-7.
[14] YANG T T, GAO Y B, LIU X C, et al. A strategy to achieve the inherently flame-retardant PA56 by copolymerization with DDP[J]. Journal of Polymers & the Environment, 2022, 30(9): 3802-3814.
[15] 夏道成, 李杰筠, 李万程, 等. 新型可溶性酞菁的合成及谱学性质研究[J]. 光谱学与光谱分析, 2017, 37(12):3793-3796.
XIA Daocheng, LI Jieyun, LI Wancheng, et al. Synthesis and spectroscopic properties of novel soluble phthalocyanines[J]. Spectroscopy and Spectral Analysis, 2017, 37 (12): 3793-3796.
[1] 赵登, 张燚, 郑梦杰, 毕曙光, 冉建华. 基于液相剥离石墨烯的可见-近红外光隐身锦纶织物[J]. 纺织学报, 2025, 46(02): 153-160.
[2] 吴佳庆, 王怡婷, 何欣欣, 郭亚飞, 郝新敏, 王迎, 宫玉梅. 混纺比对生物基锦纶56短纤/棉混纺纱力学性能的影响[J]. 纺织学报, 2023, 44(03): 49-54.
[3] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
[4] 王建明, 李永锋, 郝新敏, 闫金龙, 乔荣荣, 王美慧. 生物基锦纶56和锦纶66的结构与吸放湿性能评价[J]. 纺织学报, 2021, 42(08): 1-7.
[5] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[6] 韩虎, 李伟婷, 魏会芳, 王小艳, 孙昌, 许长海. 酸性染料易染氨纶的染色动力学[J]. 纺织学报, 2019, 40(08): 76-79.
[7] 车秋凌 辛梅华 李明春 陈帅. 季铵化改性壳聚糖在羊毛织物酸性染料染色中的应用[J]. 纺织学报, 2018, 39(10): 86-92.
[8] 王梦琴 王树根. 棉纤维阳离子化的简易定量检测方法[J]. 纺织学报, 2016, 37(4): 75-79.
[9] 黄旭 张炜栋. 五乙烯六胺改性介孔材料及其在印染废水处理中的应用[J]. 纺织学报, 2015, 36(07): 83-88.
[10] 郝新敏 李岳玲 王建明 郭亚飞 杨元. 锦纶纤维酸性染料染色动力学对比研究[J]. 纺织学报, 2015, 36(02): 77-80.
[11] 甄莉莉 付小蓉 程坚 黄丹 . 经壳聚糖季铵盐整理的羊毛织物酸性染料染色性能[J]. 纺织学报, 2014, 35(8): 59-0.
[12] 朱国华 喻红梅 叶俊 方略韬 华平. DGSS系列双子表面活性剂在羊毛织物染色中的应用[J]. 纺织学报, 2013, 34(9): 89-0.
[13] 曹机良 李晓春 边亚敏 郭雪健. 酸性染料对大豆蛋白/牛奶/聚乙烯醇共混纤维的吸附性能[J]. 纺织学报, 2013, 34(8): 83-0.
[14] 俞一婷;陈霞;朱文园. 超声波技术在羊毛低温染色中的应用[J]. 纺织学报, 2010, 31(12): 70-72.
[15] 项伟;蔡再生. 桑蚕丝织物酸性染料清洁染色工艺[J]. 纺织学报, 2010, 31(11): 77-82.
Viewed
Full text
26
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 9 0 0 17

  From Others local
  Times 7 19
  Rate 27% 73%

Abstract
57
Just accepted Online first Issue
0 0 57
  From Others local
  Times 39 18
  Rate 68% 32%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!