纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 188-196.doi: 10.13475/j.fzxb.20240904001

• 染整工程 • 上一篇    下一篇

兼具力学性能与高效阻燃性能粘胶织物的制备及其性能

宋婉萌1,2,3, 王宝弘1,2,3, 孙宇1,2,3, 杨家祥1,2,3, 刘云1,2,3(), 王玉忠4   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 功能纺织品与先进材料研究院,山东 青岛 266071
    3.青岛大学 新型防火阻燃材料开发与应用国家地方联合工程研究中心,山东 青岛 266071
    4.四川大学 化学学院, 四川 成都 610064
  • 收稿日期:2024-09-23 修回日期:2024-11-06 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 刘云(1982—),女,教授,博士。主要研究方向为功能纤维及纺织品。E-mail:yliu@qdu.edu.cn
  • 作者简介:宋婉萌(1998—),女,博士生。主要研究方向为阻燃纺织品。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    国家自然科学基金面上项目(52373059);泰山学者工程专项经费资助项目(tsqn202306163)

Preparation and performance of flame-retardant viscose fabrics with both mechanical and efficient flame-retardant properties

SONG Wanmeng1,2,3, WANG Baohong1,2,3, SUN Yu1,2,3, YANG Jiaxiang1,2,3, LIU Yun1,2,3(), WANG Yuzhong4   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    3. National Engineering Research Center for Advanced Fire-Safety Materials Development & Application (Shandong), Qindao University, Qingdao, Shandong 266071, China
    4. College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
  • Received:2024-09-23 Revised:2024-11-06 Published:2025-02-15 Online:2025-03-04

摘要:

针对植酸阻燃剂在轧烘焙高温整理条件下会对纤维素基织物产生严重的损伤,造成力学性能大幅下降的问题,通过植酸与麦芽糖醇反应合成植酸改性麦芽糖醇阻燃剂(PAMA),并将其通过轧烘焙工艺应用于粘胶织物整理。探讨了阻燃剂对粘胶织物在高温整理条件下的阻燃性能及力学性能的影响。结果表明:当植酸与麦芽糖醇的量比为1∶3时,合成的阻燃剂显著提升了织物的阻燃性能,同时有效保持了其力学性能;处理后织物的极限氧指数提高至30.1%,高温区的热稳定性有所提升,残炭量显著增加,最大热释放速率降低82%;烟释放下降明显;断裂强力保留高达98%,相比于纯植酸整理的织物,断裂强力提升近400%;PAMA阻燃剂在高温条件下展现出优异性能,具有良好的应用前景。

关键词: 粘胶织物, 生物基阻燃剂, 阻燃性能, 力学性能, 植酸, 麦芽糖醇, 功能纺织品

Abstract:

Objective Viscose fabrics, known for their breathability, dyeability, and comfort as renewable cellulose-based textiles, have found widespread use in daily life. However, viscose fabrics retain the flammable nature of cellulose-based materials, with a limiting oxygen index (LOI) of only about 18.5%. As their usage grows, so does the potential fire hazard they pose. Therefore, the flame-retardant finishing of viscose fabrics is crucial to safeguard human lives and property. Furthermore, viscose fabrics often have lower tensile strength, and most flame retardants are acidic, potentially compromising the fabric's strength during finishing. Hence, achieving flame retardancy while maintaining mechanical properties is a highly significant challenge.

Method Phytic acid (PA) and maltitol were mixed in a three-necked flask with specific molar ratios i.e., 1∶1, 1∶2, 1∶3, 1∶4, and 1∶5, and reacted under magnetic stirring at 130 ℃ for 3 h to produce the flame retardant, named PAMAab (ab presents the molar ratio of PA to maltitol). PAMA was dissolved in water to prepare aqueous solutions of 100 g/L and 200 g/L, respectively. Then, viscose fabrics were soaked in the flame-retardant solution with a bath ratio of 1∶20, and 5% sodium hypophosphite was added as a stabilizer. The flame retardant was applied to viscose fabrics using a pad-dry-curing method, in which the viscose fabrics were immersed into the solution at 70 ℃ for 20 min, then pre-dried at 80 ℃ for 3 min, followed by curing at 170 ℃ for 3 min to obtain the flame retardant treated viscose fabrics.

Results To prepare the flame-retardant treated viscose fabrics with better flame retardancy and mechanical properties, the effect of different molar ratios of PA to maltitol on the flame retardancy and mechanical properties of treated viscose fabrics was investigated in detail. The results indicated that the flame-retardant treated viscose fabrics achieved an improved balanced combination of the flame retardancy and mechanical properties when the molar ratio of PA to maltitol was 1∶3. Scanning electron microscope results showed that the flame retardant and PAMA successfully covered the surface of the fibers without noticeably blocking the orifices between them. With a flame-retardant concentration of 100 g/L, LOI value of the PAMA13-100 treated viscose fabric increased from 18.5% to 30.1%, enabling self-extinguishing with no after-flame or after-glow time. Thermal stability analysis revealed that PAMA13-100 exhibited reduced thermal stability in the low-temperature range but improved thermal stability in higher temperature zones, with a significant increase in char residues at 700 ℃. The peak heat release rate and total heat release of PAMA13-100 were decreased by 83% and 51%, respectively, and total smoke production was decreased from 3.3 m2 to 0.2 m2. PAMA13-100 demonstrated denser and more stable residual chars after cone calorimeter test, effectively preventing further flame spread and greatly enhancing the fire safety of finished viscose fabrics. Additionally, it is noteworthy that the tensile strength retention in warp direction of PAMA13-100 approached 100%, nearly 400% higher compared with that of fabrics treated with pure PA, and the tensile strength in weft direction arrived at 114%, ensuring the secured subsequent processing and use of finished viscose fabrics. This system enabled the finished viscose fabrics to achieve a UPF value of over 40, meeting the requirements for ultraviolet protection textiles and demonstrating potential as a multifunctional product.

Conclusion In conclusion, the flame retardant, PAMA, enhanced the flame retardancy and tensile strength retention of viscose fabrics treated with PA-based flame retardants through the pad-dry-curing finishing process. This system exhibited self-extinguishing properties without after-glow or after-flame time when the weight gain was 10.1%, and it effectively reduced smoke release. It can be applied to carpets, curtains, and other textiles. In subsequent research, efforts will focus on optimizing and improving its washing durability to achieve higher practical value.

Key words: viscose fabric, bio-based flame retardant, flame retardancy, tensile strength, phytic acid, maltitol, functional textile

中图分类号: 

  • TS195.2

图1

植酸与麦芽糖醇理想反应方程式"

表1

原粘胶织物及阻燃粘胶织物VFT及LOI值测试数据"

样品 增重
率/%
续燃时
间/s
阴燃时
间/s
损毁长
度/mm
LOI值/
%
原粘胶织物 0 24 40 300 18.5
PA-100 10.5 0 0 53 38.2
PAMA11-100 7.2 0 0 155 29.8
PAMA12-100 8.8 0 0 161 29.6
PAMA13-100 10.1 0 0 97 30.1
PAMA14-100 5.9 18 0 300 26.4
PAMA15-100 5.7 14 0 300 26.6

图2

原粘胶织物及阻燃粘胶织物的断裂强力"

图3

原粘胶织物与阻燃粘胶织物SEM照片"

表2

原粘胶织物与阻燃粘胶织物在氮气和空气氛围下的TG和DTG数据"

气体
氛围
样品 T5%/
Tmax1/
Rmax1/
(%·℃-1)
Tmax2/
Rmax2/
(%·
-1)
700 ℃
时残
炭量/
%
原粘胶织物 156 343 1.25 8.5
氮气 PA-200 202 230 0.46 43.7
PAMA13-100 227 255 0.47 43.0
PAMA13-200 216 246 0.44 44.0
原粘胶织物 183 323 0.84 460 0.27 1.0
空气 PA-200 208 228 0.46 509 0.17 9.4
PAMA13-100 224 262 0.48 501 0.20 12.7
PAMA13-200 227 254 0.47 503 0.13 21.5

图4

原粘胶织物与阻燃粘胶织物在氮气和空气氛围下的TG和DTG曲线"

图5

原粘胶织物与阻燃粘胶织物的HRR、THR、COP、CO2P、SPR和TSP曲线"

表3

原粘胶织物与阻燃粘胶织物CCT测试结果"

样品 TTI/s PHRR/
(kW·m-2)
THR/
(MJ·m-2)
TSP/
m2
原粘胶织物 27 171 5.9 3.3
PA-200 - 15 2.9 0.2
PAMA13-100 25 29 2.9 0.2
PAMA13-200 - 12 2.2 0.9

图6

锥形量热测试后原粘胶织物与阻燃粘胶织物残炭数码照片及SEM照片"

表4

原粘胶织物与阻燃粘胶织物防紫外线性能"

样品 UVA
透过率/%
UVB
透过率/%
UPF值
原粘胶织物 19.75 24.74 8.35
PAMA13-100 4.33 4.28 45.70
PAMA13-200 4.52 3.45 48.21
[1] 张超, 蒋之铭, 朱少彤, 等. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(7): 39-45.
ZHANG Chao, JIANG Zhiming, ZHU Shaotong, et al. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics[J]. Journal of Textile Research, 2021, 42(7): 39-45.
[2] 马君志, 葛红, 王冬, 等. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(1): 10-15.
MA Junzhi, GE Hong, WANG Dong, et al. Preparation and properties of sol-gel modified flame retardant viscose fiber[J]. Journal of Textile Research, 2021, 42(1): 10-15.
[3] 张姣姣, 李雨洋, 刘云, 等. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(7): 31-38.
ZHANG Jiaojiao, LI Yuyang, LIU Yun, et al. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics[J]. Journal of Textile Research, 2021, 42(7): 31-38.
[4] 徐英俊, 王芳, 倪延朋, 等. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(2): 1-9.
XU Yingjun, WANG Fang, NI Yanpeng, et al. Research progress on flame-retardation and multi-functionalization of textiles[J]. Journal of Textile Research, 2022, 43(2): 1-9.
[5] 全凤玉, 纪全, 夏延致, 等. 阻燃粘胶纤维的研究及其进展[J]. 纺织学报, 2004, 25(1): 121-123.
QUAN Fengyu, JI Quan, XIA Yanzhi, et al. Research and advancement of flame-retardant fiber of regenerated cellulose[J]. Journal of Textile Research, 2004, 25(1): 121-123.
[6] SONG W M, ZHANG L Y, LI P, et al. The fabrication of flame-retardant viscose fabrics with phytic acid-based flame retardants: balancing efficient flame retardancy and tensile strength[J]. International Journal of Biological Macromolecules, 2024.DOI:10.1016/j.ijbiomac.2024.129596.
[7] LI P, WANG B, LIU Y Y, et al. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics[J]. Carbohydrate Polymers, 2020.DOI:10.1016/j.carbpol.2020.116173.
[8] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(2): 162-170.
LI Ping, ZHU Ping, LIU Yun. Preparation and properties of flame-retardant polyester-cotton fabrics with chitosan-based intumescent flame retardant system[J]. Journal of Textile Research, 2024, 45(2): 162-170.
[9] 蒋之铭, 张超, 张晨曦, 等. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(6):161-167.
JIANG Zhiming, ZHANG Chao, ZHANG Chenxi, et al. Preparation and properties of flame-retardant viscose fabrics modified with phosphated polyethylenei-mine[J]. Journal of Textile Research, 2023, 44(6): 161-167.
[10] FANG Y C, SUN W H, LI J W, et al. Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating[J]. International Journal of Biological Macromolecules, 2021, 175: 140-146.
doi: 10.1016/j.ijbiomac.2021.02.023 pmid: 33556399
[11] SONG F, ZHAO Q, ZHU T Y, et al. Biobased coating derived from fish scale protein and phytic acid for flame-retardant cotton fabrics[J]. Materials & Design, 2022.DOI:10.1016/j.matdes.2022.110925.
[12] 蒋琦, 刘云, 朱平. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(2): 222-229.
JIANG Qi, LIU Yun, ZHU Ping. Preparation and properties of flame retardant/anti-ultraviolet cotton fabrics with tea polyphenol based flame retardants[J]. Journal of Textile Research, 2023, 44(2): 222-229.
[13] SONG W M, ZHANG L Y, LI P, et al. High-efficient flame-retardant finishing of cotton fabrics based on phytic acid[J]. International Journal of Molecular Sciences, 2023. DOI:10.3390/ijms24021093.
[14] ZHANG Z H, MA Z Y, LENG Q, et al. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions[J]. International Journal of Biological Macromolecules, 2019, 140: 303-310.
doi: S0141-8130(19)33223-4 pmid: 31415853
[15] ZHU W J, HAO S S, YANG M Y, et al. A synergistic flame retardant of glycosyl cross-linking boron acid and ammonium salt of phytic acid to enhance durable flame retardancy of cotton fabrics[J]. Cellulose, 2020, 27(16): 9699-9710.
[16] CHEN F, QI P, LIU J, et al. Rationally designed lentinan outer layer to improve the comprehensive performance of flame-retardant cotton fabrics[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2023.146427.
[17] LI P, LIU C, WANG B, et al. Eco-friendly coating based on an intumescent flame-retardant system for viscose fabrics with multi-function properties: flame retardancy, smoke suppression, and antibacterial properties[J]. Progress in Organic Coatings, 2021.DOI:10.1016/j.porgcoat.2021.106400.
[1] 崔芳, 张鑫卿, 殷斐, 李大伟, 雷苗苗, 谢志勇. 基于泡沫法给碱的粘胶织物活性红24无尿素印花[J]. 纺织学报, 2025, 46(02): 138-144.
[2] 郭庆, 毛阳顺, 任亚杰, 刘济民, 王怀芳, 朱平. 基于漆酶一步催化法的羊毛织物原位染色及阻燃功能化[J]. 纺织学报, 2025, 46(02): 161-169.
[3] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[4] 李鑫, 叶培培, 赵晓曼, 王鸿博, 杨国荣, 洪剑寒. 氧化铋-硅橡胶基X射线防护织物的制备及性能[J]. 纺织学报, 2025, 46(02): 227-235.
[5] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[6] 肖鑫, 李伟, 卢润, 姜会钰, 李青. 等离子体协同过氧化氢活化体系对纯棉水刺非织造布的练漂处理[J]. 纺织学报, 2024, 45(12): 118-127.
[7] 缪璐璐, 孟小奕, 董正梅, 彭倩, 何林伟, 邹专勇. 热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响[J]. 纺织学报, 2024, 45(11): 73-79.
[8] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
[9] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[10] 李蒙, 戴梦男, 俞杨销, 王建南. 丝素蛋白基骨修复材料的应用研究进展[J]. 纺织学报, 2024, 45(10): 224-231.
[11] 刘婷, 闫涛, 潘志娟. 香蕉茎秆纤维/抗菌纤维混纺纱的制备及其性能[J]. 纺织学报, 2024, 45(10): 48-54.
[12] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[13] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[14] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[15] 刘术, 侯腾, 周乐乐, 李祥龙, 杨斌. 桑蚕的强制牵伸抽丝及其纤维性能[J]. 纺织学报, 2024, 45(06): 11-15.
Viewed
Full text
31
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 7 0 0 24

  From Others local
  Times 19 12
  Rate 61% 39%

Abstract
38
Just accepted Online first Issue
0 0 38
  From Others local
  Times 33 5
  Rate 87% 13%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!