纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 113-121.doi: 10.13475/j.fzxb.20240904601

• 纺织工程 • 上一篇    下一篇

全织物型离电式柔性压力传感器的制备及其性能

张蕊1,2, 叶苏娴2, 王建1,2(), 邹专勇1,2   

  1. 1.绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
    2.绍兴文理学院 绍兴市高性能纤维及制品重点实验室, 浙江 绍兴 312000
  • 收稿日期:2024-09-24 修回日期:2024-10-31 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 王建(1989—),男,讲师,博士。主要研究方向为智能可穿戴纺织品。E-mail:jwang@usx.edu.cn
  • 作者简介:张蕊(2000—),女,硕士生。主要研究方向为纤维基传感器件的制备。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    浙江省大学生科技创新活动计划(新苗人才计划)项目(2023R465032);浙江省教育厅一般科研项目(Y202351466)

Preparation and performance of all-fabric iontronic flexible pressure sensor

ZHANG Rui1,2, YE Suxian2, WANG Jian1,2(), ZOU Zhuanyong1,2   

  1. 1. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Shaoxing Key Laboratory of High Performance Fibers & Products, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2024-09-24 Revised:2024-10-31 Published:2025-02-15 Online:2025-03-04

摘要:

针对传统的电容式压力传感器灵敏度较低且不透气的问题,制备了一种采用碳纳米管修饰的非织造布为电极层,离子液体处理的非织造布为介电层的透气性全织物型离电式柔性压力传感器。借助扫描电子显微镜、全自动单一纤维接触角测量仪和全自动透气性测试仪等表征与分析电极层和介电层。结果表明:全织物型离电式柔性压力传感器在低压范围(0~1.19 kPa)内的灵敏度高达2.89 kPa-1,具有0~224 kPa较宽的感测范围,较短的响应时间(50 ms),在超过1 000次施压循环后仍然保持较稳定的相对电容变化;此外,还具有较好的透气率(225 mm/s)和超疏水性,其水接触角为159.5°。全织物型离电式柔性压力传感器对人体关节运动具有优异的识别能力,在运动监测领域具有潜在的应用前景。

关键词: 柔性压力传感器, 离电式柔性压力传感器, 非织造布, 碳纳米管, 运动监测

Abstract:

Objective With the rapid development of smart wearable technology, flexible capacitive pressure sensors have been widely applied in various fields. However, traditional sensors suffer from low sensitivity and poor breathability, which seriously affect their performance and wearing comfort. Hence, this paper presents a breathable iontronic flexible pressure sensor based on the use of nonwoven fabrics, aiming to improve the deficiencies of existing capacitive sensors.

Method A breathable all-fabric iontronic flexible pressure sensor was prepared by using nonwoven fabric as the base material, carbon nanotube-modified nonwoven fabric as the electrode layer, and ionic liquid-treated nonwoven fabric as the dielectric layer. The sensor was characterized and analyzed using SEM, TH2830 LCR digital multimeter, and a self-developed tensile tester.

Results Three different contents (20%, 35% and 50%) of ion/fabric dielectric layers were prepared. The sensitivity and sensing performance of the sensors with these three different contents of ion/fabric dielectric layers were comparatively investigated. The results indicated that the sensor with 50% ion/fabric dielectric layer exhibited the highest sensitivity. This is attributed to the fact that the sensor reduced the distance between the upper and lower electrodes under external pressure. Meanwhile, with the increase in the content of ionic liquid adhered to the fiber surface, under the effect of the enhanced electric field, the number of pairs of charges accumulated at the electrode-dielectric layer interface will increase, thereby enhancing the response capacitance value. The sensor with 50% ion/fabric dielectric layer had a sensitivity as high as 2.89 kPa-1 within the range of 0-1.19 kPa and a sensitivity of 0.17 kPa-1 within the range of 1.19-224 kPa. Simultaneously, it demonstrated a wide sensing range (0-224 kPa), short response and recovery times (50/50 ms), strong durability (> 1 000 cycles), air permeability (225 mm/s), and superhydrophobic properties, with a water contact angle of 159.5°. Additionally, this sensor sh owed favorable non-contact performance, with a non-contact sensitivity of 1.43×10-3 cm-1.

Conclusion The above characterizations suggest that the sensing performance of the iontronic flexible pressure sensor fabricated with the nonwoven fabric modified by 50% ionic liquid has been significantly enhanced. Under non-contact sensing, this sensor can distinctly recognize the speed and distance of the contacted object. Under pressure sensing, it can rapidly and precisely perceive the variations in human joint movement and motion angles. Therefore, this work opens up a new path for flexible capacitive sensors and has great potential in the field of human motion monitoring.

Key words: flexible pressure sensor, iontronic flexible pressure sensor, nonwoven fabric, carbon nanotube, motion monitoring

中图分类号: 

  • TS176

图1

离电式柔性压力传感器的制备流程示意图"

图2

电极层改性前后的SEM照片"

图3

介电层离子液体处理前后的SEM照片和元素分布图"

图4

介电层离子液体处理前后的红外光谱图"

图5

电极层接触角和不同含量的离子/织物介电层传感器透气性测试"

图6

离电式柔性压力传感器压力传感性能"

图7

离电式柔性压力传感器压力传感机制"

图8

离电式柔性压力传感器非接触传感性能"

图9

离电式柔性压力传感器监测手指和手腕运动效果"

图10

离电式柔性压力传感器监测膝盖与喉部运动效果"

[1] HUANG C Y, YANG G, HUANG P, et al. Flexible pressure sensor with an excellent linear response in a broad detection range for human motion monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 3476-3485.
[2] 王晨露, 马金星, 杨雅晴, 等. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(8):113-118.
WANG Chenlu, MA Jinxing, YANG yaqing, et al. Strain sensing property and respiration monitoring of polyaniline-coated warp-knitted fabrics[J]. Journal of Textile Research, 2022, 43(8):113-118.
[3] CUI J, NAN X, SHAO G, et al. High-sensitivity flexible pressure sensor-based 3D cnts sponge for human-computer interaction[J]. Polymers, 2021, 13(20): 3465.
[4] ZHONG M, ZHANG L, LIU X, et al. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces[J]. Chemical Engineering Journal, 2021. DOI:10.1016/J.CEJ.2021.128649.
[5] LIU X, WEI Y, QIU Y. Advanced flexible skin-like pressure and strain sensors for human health monitor-ing[J]. Micromachines, 2021, 12(6): 695.
[6] ZHANG R, YE S, SUZUKI R, et al. Carbon nanotube modified cellulose nonwovens: superhydrophobic, breathable, and sensitive for drowning alarm and motion monitoring[J]. Cellulose, 2024, 31(5): 3143-3161.
[7] ZHANG R, WANG J, ZOU Z. Highly-performance nonwoven pressure sensors with enhanced breathability and durability for human health monitoring[J]. Physica Scripta, 2024. DOI: 10.1088/1402-4896/ad3405.
[8] JUNG Y, LEE W, JUNG K, et al. A highly sensitive and flexible capacitive pressure sensor based on a porous three-dimensional PDMS/microsphere composite[J]. Polymers, 2020, 12(6): 1412.
[9] ZHANG X, DANG D, SU S, et al. A highly sensitive flexible capacitive pressure sensor with wide detection range based on bionic gradient microstructures[J]. IEEE Sensors Journal, 2023, 23(14): 15413-15423.
[10] KIM M, DOH I, OH E, et al. Flexible piezoelectric pressure sensors fabricated from nanocomposites with enhanced dispersion and vapor permeability for precision pulse wave monitoring[J]. ACS Applied Nano Materials, 2023, 6(23): 22025-22035.
[11] YANG Y, PAN H, XIE G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring[J]. Sensors and Actuators A: Physical, 2020. DOI: 10.1016/j.sna.2019.111789.
[12] ZHANG P, ZHANG Z, CAI J. A foot pressure sensor based on triboelectric nanogenerator for human motion monitoring[J]. Microsystem Technologies, 2021, 27: 3507-3512.
[13] SHAN B, LIU C, CHEN R, et al. A self-powered sensor for detecting slip state and pressure of underwater actuators based on triboelectric nanogenerator[J]. Materials Today Nano, 2023. DOI: 10.1016/j.mtnano.2023.100391.
[14] CHEN W, YAN X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review[J]. Journal of Materials Science & Technology, 2020, 43: 175-188.
[15] YANG J, LUO S, ZHOU X, et al. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14997-15006.
[16] LIU M Y, HANG C Z, ZHAO X F, et al. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106181.
[17] SHARMA A, ANSARI M Z, CHO C. Ultrasensitive flexible wearable pressure/strain sensors: parameters, materials, mechanisms and applications[J]. Sensors and Actuators A: Physical, 2022. DOI: 10.1016/j.sna.2022.113934.
[18] HAN M, LEE J, KIM J K, et al. Highly sensitive and flexible wearable pressure sensor with dielectric elastomer and carbon nanotube electrodes[J]. Sensors and Actuators A: Physical, 2020. DOI: 10.1016/j.sna.2020.111941.
[19] YUAN H, ZHANG Q, ZHOU T, et al. Progress and challenges in flexible capacitive pressure sensors: microstructure designs and applications[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.149926.
[20] MA L, SHUAI X, HU Y, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer[J]. Journal of Materials Chemistry C, 2018, 6(48): 13232-13240.
[21] CHEN Q, YANG J, CHEN B, et al. Wearable pressure sensors with capacitive response over a wide dynamic range[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44642-44651.
[22] CHENG A J, WU L, SHA Z, et al. Recent advances of capacitive sensors: materials, microstructure designs, applications, and opportunities[J]. Advanced Materials Technologies, 2023. DOI: 10.1002/admt.202201959.
[23] 佘明华, 李新新, 刘金坤, 等. 电容式织物基压力传感器制备及人机交互应用[J]. 棉纺织技术, 2023, 51(3):35-40.
SHE Minghua, LI Xinxin, LIU Jinkun, et al. Preparation of capacitive type fabric-based pressure sensor and its application in human-computer interac-tion[J]. Cotton Textile Technology, 2023, 51(3):35-40.
[24] 赵博宇, 李露红, 丛洪莲. 棉/Ti3C2导电纱制备及其电容式压力传感器的性能[J]. 纺织学报, 2022, 43(7):47-54.
ZHAO Boyu, LI Luhong, CONG Honglian. Preparation of cotton /Ti3C2 conductive yarn and performance of pressure capacitance sensor[J]. Journal of Textile Research, 2022, 43(7):47-54.
[25] GABRYŚ T, FRYCZKOWSKA B, GRZYBOWSKA-PIETRAS J, et al. Modification and properties of cellulose nonwoven fabric: multifunctional mulching material for agricultural applications[J]. Materials, 2021, 14(15): 4335.
[26] ZHANG R, WANG J, WANG J, et al. Dome structure nonwoven-based dual-mode pressure-humidity sensor: enhancing sensitivity and breathability for human health monitoring[J]. Sensors and Actuators A: Physical, 2024. DOI: 10.1016/j.sna.2024.115887.
[27] PRASANNA C M S, SUTHANTHIRARAJ S A. Effective influences of 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (EMIMTFSI) ionic liquid on the ion transport properties of micro-porous zinc-ion conducting poly (vinyl chloride)/poly (ethyl methacrylate) blend-based polymer electrolytes[J]. Journal of Polymer Research, 2016, 23: 1-17.
[28] CHO C, KIM D, LEE C, et al. Ultrasensitive ionic liquid polymer composites with a convex and wrinkled microstructure and their application as wearable pressure sensors[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13625-13636.
[29] SUN G, JIANG Y, SUN H, et al. Flexible, breathable, and hydrophobic iontronic tactile sensors based on a nonwoven fabric platform for permeable and waterproof wearable sensing applications[J]. ACS Applied Electronic Materials, 2023, 5(11): 6477-6489.
[30] WEI Z, LI X, CAI X, et al. A water-resistance and breathable fabric-based sensor with high sensitivity for air and underwater applications[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.150034.
[31] YANG J, LIU Q, DENG Z, et al. Ionic liquid-activated wearable electronics[J]. Materials Today Physics, 2019, 8: 78-85.
doi: 10.1016/j.mtphys.2019.02.002
[32] GUAN F, XIE Y, WU H, et al. Silver nanowire-bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity[J]. ACS Nano, 2020, 14(11): 15428-15439.
doi: 10.1021/acsnano.0c06063 pmid: 33030887
[33] YE X, TIAN M, LI M, et al. All-fabric-based flexible capacitive sensors with pressure detection and non-contact instruction capability[J]. Coatings, 2022, 12(3): 302.
[1] 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179.
[2] 张喆, 王瑞, 蔡涛. 图案化耐久水性聚氨酯/碳纳米管涂层多功能抗静电复合织物的高效经济制备[J]. 纺织学报, 2025, 46(02): 207-217.
[3] 肖鑫, 李伟, 卢润, 姜会钰, 李青. 等离子体协同过氧化氢活化体系对纯棉水刺非织造布的练漂处理[J]. 纺织学报, 2024, 45(12): 118-127.
[4] 赵方, 邵光伟, 邵慧奇, 毕思伊, 李明昊, 海文清, 张鑫, 姜子洋, 蒋金华, 陈南梁. 镍/铜/镍-碳纳米管复合纱线的制备及其性能[J]. 纺织学报, 2024, 45(12): 144-151.
[5] 许秋歌, 郭寻, 朵永超, 吴若楠, 钱晓明, 宋兵, 符浩, 赵宝宝. 高收缩聚酯/聚酰胺6中空橘瓣型纺黏针刺非织造布的制备及其性能[J]. 纺织学报, 2024, 45(12): 41-49.
[6] 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88.
[7] 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45.
[8] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
[9] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[10] 刘文龙, 李好义, 何东洋, 李长金, 张杨, 马秀清, 李满意, 杨卫民. 低密度聚乙烯熔喷工艺及其非织造布性能[J]. 纺织学报, 2024, 45(10): 31-38.
[11] 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145.
[12] 柯文涛, 陈明, 郑淳天, 石小丽, 朱新生. 石蜡Pickering乳液及其微胶囊相变非织造材料的制备与性能[J]. 纺织学报, 2024, 45(07): 130-139.
[13] 张诗雨, 姚依婷, 董晨珊, 张如全, 杨红军, 顾绍金, 黄菁菁, 杜杰毫. 金属有机框架/聚丙烯纤维基复合材料对化学战剂模拟物的快速降解[J]. 纺织学报, 2024, 45(06): 134-141.
[14] 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146.
[15] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
Viewed
Full text
24
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 9 0 0 15

  From Others local
  Times 7 17
  Rate 29% 71%

Abstract
56
Just accepted Online first Issue
0 0 56
  From Others local
  Times 46 10
  Rate 82% 18%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!