纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 26-34.doi: 10.13475/j.fzxb.20240904901

• 纤维材料 • 上一篇    下一篇

基于废旧纺织品的湿度响应纤维素/聚氨酯复合材料的制备及其性能

杨露1, 孟家光1,2(), 陈雨青1, 支超1,2   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
  • 收稿日期:2024-09-25 修回日期:2024-10-22 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 孟家光(1964—),男,教授,博士。主要研究方向为针织理论、工艺与技术及智能纺织品的研究与开发。E-mail:mengjiaguang@126.com
  • 作者简介:杨露(1996—),女,博士生。主要研究方向为智能纺织材料与制品的制备。
    第一联系人:

    说 明:本文入围中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-017);陕西省创新能力支撑计划项目(2022KJXX-40);陕西省重点研发计划项目(2020GY-312);陕西省重点研发计划项目(2023-YBGY-490);陕西省教育厅科研项目(23JP054)

Preparation and properties of humidity-responsive cellulose/polyurethane composites based on waste textiles

YANG Lu1, MENG Jiaguang1,2(), CHEN Yuqing1, ZHI Chao1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Materials and Products, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2024-09-25 Revised:2024-10-22 Published:2025-02-15 Online:2025-03-04

摘要:

为提升废旧纺织品的利用价值,同时促进智能驱动结构的发展,通过溶解、混合及成膜工艺,将废旧棉织物与废旧聚氨酯结合,制成了具有湿度响应性的纤维素/聚氨酯复合薄膜,分别采用扫描电子显微镜观察了复合膜的形貌特征,用万能试验机测试了复合膜的力学性能并分析了复合膜的湿度响应性。结果表明:复合膜外观均一且成形好,厚度为(0.18±0.02) mm的纤维素/聚氨酯膜可轻松承受1 000 g的质量而不受损坏,超过薄膜本身质量的34 000倍,具有良好的力学性能;当复合薄膜中纤维素质量分数为30%时展现出良好的成形效果及驱动性能,表现出15 s的快速响应时间、32 s的回复时间及136.3°的弯曲角度;其出色的湿度响应特性归因于亲水性纤维素和具有良好弹性的聚氨酯,纤维素可完成吸收/解吸水分子的过程。基于这些特性,将复合薄膜应用于模拟“机械抓手”,成功地完成了物品的抓取操作,研究结果可促进废旧纺织品的循环利用,为纤维素材料在智能驱动领域的应用开辟新途径。

关键词: 废旧纺织品, 再生纤维素, 聚氨酯, 湿度响应, 复合材料

Abstract:

Objective With the improvement of life quality and hence the increasing demand for textiles, a large amount of textile waste is generated globally each year. Recycling and reusing this waste is crucial for developing low-cost, sustainable, high-performance, and renewable materials. This study focuses on creating humidity-responsive composite materials from recycled waste contton and polyurethane (PU) textiles, aiming for high-end applications.

Method A cellulose/polyurethane composite film with humidity-responsive properties was developed using cellulose extracted from waste textiles. The process began with the pretreatment of waste cotton fabrics through bleaching and activation. Afterward, the fabrics were dissolved in LiCl/dimethylacetamide(DMAc) solvents, regenerated into a cellulose film, and dried. The cellulose film was then mechanically crushed to produce uniform cellulose powder (the average particle size is 0.17 mm). Next, the cellulose powder and polyurethane material were separately dispersed in a dimethylformamide(DMF) solution. Among them, the mass fraction of cellulose powder is 0, 10%, 20%, 30%, 40%, respectively. These were then mixed in a mold to form the cellulose/polyurethane composite film. Last, the morphology characteristics of the composite film were observed using scanning electron microscopy and the mechanical properties of the composite film were tested using a universal testing machine. In addition, based on the mechanism of humidity response of the cotton/PU composites, the humidity responsiveness of the composite film was analyzed.

Results Humidity-responsive cellulose/polyurethane films were successfully prepared using the mold forming method. The microstructure of the composite film shows rough surface characteristics, which is because the addition of cellulose filler changes the internal structure of the composite film and generates a new surface area on the surface of the composite film. Furthermore, chemical structural analysis further confirmed the effective incorporation of cellulose into the PU matrix during making the cellulose/polyurethane composites. A cellulose/polyurethane film with a thickness of (0.18±0.02) mm was shown to easily withstood a weight of 1 000 g without being damaged. This capacity is 34 000 times higher than the weight of the film itself, and showed good mechanical properties. This is due to the tight bond between the polyurethane matrix and the cellulose powder, which can support the good mechanical properties of the composite film. In addition, the cellulose/polyurethane composite film demonstrated a tensile strength of 19.23 MPa. This strength is believed to be from the abundant hydrogen bonds present in the film, which enhance its overall integrity. By introducing cellulose materials, the composite film exhibited excellent humidity driving performance. Cellulose polymer chains form layered networks through intermolecular and intramolecular bonds, facilitated by the abundant hydroxyl groups in cellulose macromolecules. This unique structure imparts hygroscopic and expansive properties to cellulose fibers, causing them to react to water molecules. As humidity increases, water molecules quickly diffuse into the composite film, which allows cellulose to absorb significant amounts of water, causing it to expand, providing the driving force for the deformation of the film. As the content of cellulose continued to increase, the response bending angle of the film became larger, while the time needed to reach the maximum bending angle was shortened. When the mass fraction of cellulose was 30%, it showed good molding effect and driving performance. Specifically, it showed a rapid response time of 15 s, a recovery time of 32 s, and a bending angle of 136.3°. This excellent humidity response is due to the hydrophilic nature of cellulose and the elasticity of polyurethane, which together facilitated the absorption and desorption of water molecules.

Conclusion The humidity switch can expand or contract as cellulose absorbs or desorbs water molecules. This process generates a driving force for film deformation. Consequently, it effectively enables reversible shape actuation and recovery. This occurs by desorbing or absorbing water molecules, allowing for reversible shape driving and recovery. Additionally, the composite film was applied to simulate a "mechanical gripper" and successfully completed the grasping operation of objects. This method of reusing waste textiles has opened up new avenues for the application of cellulose materials in the fields of intelligent driving. The rapid humidity-responsive composite films have great application potential in intelligent drive structures.

Key words: waste textile, regenerated cellulose, polyurethane, humidity response, composite material

中图分类号: 

  • TS119

图1

纤维素/聚氨酯复合膜的制备过程及湿度响应"

图2

复合膜的湿度响应弯曲角"

图3

废旧纺织品处理结果表征"

图4

废旧棉织物及再生纤维素化学结构对比"

图5

聚氨酯膜和纤维素/聚氨酯膜形貌及化学结构对比"

图6

不同比例纤维素/聚氨酯复合膜的时间-弯曲角度关系"

表1

复合膜中纤维素含量对驱动性的影响"

复合膜 驱动时间/s 回复时间/s 最大弯曲角度/(°)
RCP/PU-10 35 65 67.7
RCP/PU-20 22 43 108.7
RCP/PU-30 15 32 136.3
RCP/PU-40 10 18 168.3

图7

复合膜湿响应驱动变形机制"

图8

复合膜的力学性能"

图9

复合膜的接触角对比"

图10

复合膜的驱动结构设计及驱动过程"

图11

湿度响应机械手设计"

[1] WANG L X, HUANG S T, WANG Y X. Recycling of waste cotton textile containing elastane fibers through dissolution and regeneration[J]. Membranes, 2022, 12(355): 1-10.
[2] LIU H J, KOWSAR A M, HE M T, et al. Sustainable cellulose aerogel from waste cotton fabric for high performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 49860-49867.
[3] MARIA R C, JOSEFINE C, IOANNIS S, et al. Cellulose nanocrystals from postconsumer cotton and blended fabrics: a study on their properties, chemical composition, and process efficiency[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3787-3798.
[4] LING C, SHI S, HOU W S, et al. Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid[J]. Polymer Degradation and Stability, 2019, 161: 157-165.
[5] MA Y B, ROSSON L, WANG X G, et al. Upcycling of waste textiles into regenerated cellulose fibres: impact of pretreatments[J]. The Journal of The Textile Institute, 2020, 111(5): 1754-2340.
[6] FAN W Q, WANG Y Z, LIU R L, et al. Weldable and calligraphy programmable humidity-actuated regenerated cellulose film from waste cotton fabric,[J]. Journal of Cleaner Production, 2024, 434: 1-13.
[7] MONTOYA R Ú, ÁLVAREZ L C, GAŇÁN R P. All-cellulose composites prepared by partial dissolving of cellulose fibers from musaceae leaf-sheath waste [J]. Journal of Composite Materials, 2021, 55(22): 3141-3149.
[8] LI X, LI H C, YOU T T, et al. Enhanced dissolution of cotton cellulose in 1-allyl-3-methylimidazolium chloride by the addition of metal chlorides[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19176-19184.
[9] 孙中华, 陈夫山. DMAc/LiCl体系下纤维素/聚醚砜共混膜的制备与表征[J]. 包装工程, 2013, 34(5): 34-36.
SUN Zhonghua, CHEN Fushan. Preparation and Characterization of cellulose/PES blend membrane in DMAc /LiCl solution[J]. Package Engineering, 2013, 34(5): 34-36.
[10] SU H, WANG B, SUN Z, et al. High-tensile regenerated cellulose films enabled by unexpected enhancement of cellulose dissolution in cryogenic aqueous phosphoric acid[J]. Carbohydrate Polymer, 2022, 277: 1-12.
[11] ZHOU C, WANG Y. Recycling of waste cotton fabrics into regenerated cellulose films through three solvent systems: a comparison study[J]. Journal of Applied Polymer Science, 2021. DOI: 10.1002/app.51255.
[12] LIU Y, LI K, YAO J, et al. Copper-coordinated cellulose fibers for electric devices with motion sensitivity and flame retardance[J]. ACS Applied Materials Interfaces, 2023, 15(14): 18272-18280.
[13] CAO X D, DENG R, LINDA Z. Structure and properties of cellulose films coated with polyurethane/benzyl starch semi-IPN coating[J]. Industrial & Engineering Chemistry Research, 2006, 45:4193-4199.
[14] ZHANG X, ZHU J, LIU X, et al. The study of regenerated cellulose films toughened with thermoplastic polyurethane elastomers[J]. Cellulose, 2011, 19(1): 121-126.
[15] CHANG S, WENG Z, ZHANG C, et al. Cellulose-based intelligent responsive materials: a review[J]. Polymers, 2023, 15(19): 1-30.
[16] RICHADSON T B, MOSIEWICKI M A, UZUNPINAR C, et al. Study of nanoreinforced shape memory polymers processed by casting and extrusion[J]. Polymer Composites, 2011, 32(3): 455-463.
[17] TAN L, HU J, RENA L Y, et al. Quick water-responsive shape memory hybrids with cellulose nanofibers[J]. Journal of Polymer Science Part A(Polymer Chemistry), 2016, 55(4): 767-775.
[18] MA H, JIANG Y, HAN W, et al. High wet-strength, durable composite film with nacre-like structure for moisture-driven actuators[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.141353.
[19] CAI G, CIOU J, LIU Y, et al. Leaf-inspired multiresponsive MXene based actuator for programmable smart devices[J]. Science Advanced, 2019. DOI: 10.1126/sciadv.aaw7956.
[20] YANG Z, AN Y, HE Y, et al. A programmable actuator as synthetic earthworm[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202303805.
[21] CHE X, WU M, YU G, et al. Bio-inspired water resistant and fast multi-responsive Janus actuator assembled by cellulose nanopaper and graphene with lignin adhesion[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.133672.
[22] CHEN Z, PENG Q, HU Y, et al. Dried bonito flakes-inspired moisture-responsive actuator with a gradient structure for smart devices[J]. Journal of Materials Science & Technology, 2023, 167: 152-160.
[23] WEI Y, LI S, ZHANG X, et al. Smart devices based on the soft actuator with nafion-polypropylene-PDMS /graphite multilayer structure[J]. Applied Sciences, 2020. DOI: 10.3390/app10051829.
[1] 王小艳, 杨书康, 肖国威, 杜金梅, 许长海. 光响应螺噁嗪掺杂长余辉发光纤维的制备及其性能[J]. 纺织学报, 2025, 46(02): 1-9.
[2] 朱琳, 王展鹏, 吴宝宅, 汪少朋, 刘一鸣, 代成娜, 陈标华. 废旧涤纶织物的溶剂萃取剥色及其对醇解的影响[J]. 纺织学报, 2025, 46(01): 103-110.
[3] 刘仁义, 杨琴, 孙宝忠, 顾伯洪, 张威. 织物增强复合材料的电热驱动形状记忆回复行为[J]. 纺织学报, 2025, 46(01): 72-79.
[4] 郭艳文, 黄晓梅, 曹海建. 增强体结构对三维角联锁复合材料抗冲击性能的影响[J]. 纺织学报, 2025, 46(01): 80-86.
[5] 左红梅, 高敏, 阮芳涛, 邹梨花, 徐珍珍. MXene-氧化石墨烯改性碳纤维/聚乳酸复合材料制备及其力学性能[J]. 纺织学报, 2025, 46(01): 9-15.
[6] 孙戬, 王彤, 陈云辉, 林何, 刘晖, 成小乐. 织物增强橡胶基复合材料本构模型及其应用[J]. 纺织学报, 2025, 46(01): 95-102.
[7] 郭琦, 吴宁, 孟影, 安达, 黄建龙, 陈利. 变厚度头锥体织物的工艺设计与验证[J]. 纺织学报, 2024, 45(12): 98-108.
[8] 余晓佩, 沈伟, 陈立峰, 竺铝涛. 玻璃纤维复合材料损伤裂纹修复及其性能评价[J]. 纺织学报, 2024, 45(11): 121-127.
[9] 王理杰, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 衣康酸聚乙二醇单醚酯封端水性聚氨酯织物涂层剂的制备及其性能[J]. 纺织学报, 2024, 45(10): 145-151.
[10] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[11] 姜梦敏, 王一璠, 金欣, 王闻宇, 肖长发. 聚吡咯共轭结构对碳纤维增强树脂基复合材料热循环稳定性能的影响[J]. 纺织学报, 2024, 45(10): 23-30.
[12] 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120.
[13] 周领辉, 祝成炎, 金肖克, 马雷雷, 陈海相, 田伟. 基于三维显微镜成像的墨西哥红酸枝内部纤维分布及结构形态表征[J]. 纺织学报, 2024, 45(09): 56-62.
[14] 吕丽华, 庞现柯, 刘澳. 变厚度三维机织复合材料的抗冲击性能[J]. 纺织学报, 2024, 45(09): 91-96.
[15] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
Viewed
Full text
69
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 21 0 0 48

  From Others local
  Times 12 57
  Rate 17% 83%

Abstract
79
Just accepted Online first Issue
0 0 79
  From Others local
  Times 41 38
  Rate 52% 48%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!