纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 26-34.doi: 10.13475/j.fzxb.20240904901
YANG Lu1, MENG Jiaguang1,2(), CHEN Yuqing1, ZHI Chao1,2
摘要:
为提升废旧纺织品的利用价值,同时促进智能驱动结构的发展,通过溶解、混合及成膜工艺,将废旧棉织物与废旧聚氨酯结合,制成了具有湿度响应性的纤维素/聚氨酯复合薄膜,分别采用扫描电子显微镜观察了复合膜的形貌特征,用万能试验机测试了复合膜的力学性能并分析了复合膜的湿度响应性。结果表明:复合膜外观均一且成形好,厚度为(0.18±0.02) mm的纤维素/聚氨酯膜可轻松承受1 000 g的质量而不受损坏,超过薄膜本身质量的34 000倍,具有良好的力学性能;当复合薄膜中纤维素质量分数为30%时展现出良好的成形效果及驱动性能,表现出15 s的快速响应时间、32 s的回复时间及136.3°的弯曲角度;其出色的湿度响应特性归因于亲水性纤维素和具有良好弹性的聚氨酯,纤维素可完成吸收/解吸水分子的过程。基于这些特性,将复合薄膜应用于模拟“机械抓手”,成功地完成了物品的抓取操作,研究结果可促进废旧纺织品的循环利用,为纤维素材料在智能驱动领域的应用开辟新途径。
中图分类号:
[1] | WANG L X, HUANG S T, WANG Y X. Recycling of waste cotton textile containing elastane fibers through dissolution and regeneration[J]. Membranes, 2022, 12(355): 1-10. |
[2] | LIU H J, KOWSAR A M, HE M T, et al. Sustainable cellulose aerogel from waste cotton fabric for high performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 49860-49867. |
[3] | MARIA R C, JOSEFINE C, IOANNIS S, et al. Cellulose nanocrystals from postconsumer cotton and blended fabrics: a study on their properties, chemical composition, and process efficiency[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3787-3798. |
[4] | LING C, SHI S, HOU W S, et al. Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid[J]. Polymer Degradation and Stability, 2019, 161: 157-165. |
[5] | MA Y B, ROSSON L, WANG X G, et al. Upcycling of waste textiles into regenerated cellulose fibres: impact of pretreatments[J]. The Journal of The Textile Institute, 2020, 111(5): 1754-2340. |
[6] | FAN W Q, WANG Y Z, LIU R L, et al. Weldable and calligraphy programmable humidity-actuated regenerated cellulose film from waste cotton fabric,[J]. Journal of Cleaner Production, 2024, 434: 1-13. |
[7] | MONTOYA R Ú, ÁLVAREZ L C, GAŇÁN R P. All-cellulose composites prepared by partial dissolving of cellulose fibers from musaceae leaf-sheath waste [J]. Journal of Composite Materials, 2021, 55(22): 3141-3149. |
[8] | LI X, LI H C, YOU T T, et al. Enhanced dissolution of cotton cellulose in 1-allyl-3-methylimidazolium chloride by the addition of metal chlorides[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19176-19184. |
[9] | 孙中华, 陈夫山. DMAc/LiCl体系下纤维素/聚醚砜共混膜的制备与表征[J]. 包装工程, 2013, 34(5): 34-36. |
SUN Zhonghua, CHEN Fushan. Preparation and Characterization of cellulose/PES blend membrane in DMAc /LiCl solution[J]. Package Engineering, 2013, 34(5): 34-36. | |
[10] | SU H, WANG B, SUN Z, et al. High-tensile regenerated cellulose films enabled by unexpected enhancement of cellulose dissolution in cryogenic aqueous phosphoric acid[J]. Carbohydrate Polymer, 2022, 277: 1-12. |
[11] | ZHOU C, WANG Y. Recycling of waste cotton fabrics into regenerated cellulose films through three solvent systems: a comparison study[J]. Journal of Applied Polymer Science, 2021. DOI: 10.1002/app.51255. |
[12] | LIU Y, LI K, YAO J, et al. Copper-coordinated cellulose fibers for electric devices with motion sensitivity and flame retardance[J]. ACS Applied Materials Interfaces, 2023, 15(14): 18272-18280. |
[13] | CAO X D, DENG R, LINDA Z. Structure and properties of cellulose films coated with polyurethane/benzyl starch semi-IPN coating[J]. Industrial & Engineering Chemistry Research, 2006, 45:4193-4199. |
[14] | ZHANG X, ZHU J, LIU X, et al. The study of regenerated cellulose films toughened with thermoplastic polyurethane elastomers[J]. Cellulose, 2011, 19(1): 121-126. |
[15] | CHANG S, WENG Z, ZHANG C, et al. Cellulose-based intelligent responsive materials: a review[J]. Polymers, 2023, 15(19): 1-30. |
[16] | RICHADSON T B, MOSIEWICKI M A, UZUNPINAR C, et al. Study of nanoreinforced shape memory polymers processed by casting and extrusion[J]. Polymer Composites, 2011, 32(3): 455-463. |
[17] | TAN L, HU J, RENA L Y, et al. Quick water-responsive shape memory hybrids with cellulose nanofibers[J]. Journal of Polymer Science Part A(Polymer Chemistry), 2016, 55(4): 767-775. |
[18] | MA H, JIANG Y, HAN W, et al. High wet-strength, durable composite film with nacre-like structure for moisture-driven actuators[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.141353. |
[19] | CAI G, CIOU J, LIU Y, et al. Leaf-inspired multiresponsive MXene based actuator for programmable smart devices[J]. Science Advanced, 2019. DOI: 10.1126/sciadv.aaw7956. |
[20] | YANG Z, AN Y, HE Y, et al. A programmable actuator as synthetic earthworm[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202303805. |
[21] | CHE X, WU M, YU G, et al. Bio-inspired water resistant and fast multi-responsive Janus actuator assembled by cellulose nanopaper and graphene with lignin adhesion[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.133672. |
[22] | CHEN Z, PENG Q, HU Y, et al. Dried bonito flakes-inspired moisture-responsive actuator with a gradient structure for smart devices[J]. Journal of Materials Science & Technology, 2023, 167: 152-160. |
[23] | WEI Y, LI S, ZHANG X, et al. Smart devices based on the soft actuator with nafion-polypropylene-PDMS /graphite multilayer structure[J]. Applied Sciences, 2020. DOI: 10.3390/app10051829. |
[1] | 王小艳, 杨书康, 肖国威, 杜金梅, 许长海. 光响应螺噁嗪掺杂长余辉发光纤维的制备及其性能[J]. 纺织学报, 2025, 46(02): 1-9. |
[2] | 朱琳, 王展鹏, 吴宝宅, 汪少朋, 刘一鸣, 代成娜, 陈标华. 废旧涤纶织物的溶剂萃取剥色及其对醇解的影响[J]. 纺织学报, 2025, 46(01): 103-110. |
[3] | 刘仁义, 杨琴, 孙宝忠, 顾伯洪, 张威. 织物增强复合材料的电热驱动形状记忆回复行为[J]. 纺织学报, 2025, 46(01): 72-79. |
[4] | 郭艳文, 黄晓梅, 曹海建. 增强体结构对三维角联锁复合材料抗冲击性能的影响[J]. 纺织学报, 2025, 46(01): 80-86. |
[5] | 左红梅, 高敏, 阮芳涛, 邹梨花, 徐珍珍. MXene-氧化石墨烯改性碳纤维/聚乳酸复合材料制备及其力学性能[J]. 纺织学报, 2025, 46(01): 9-15. |
[6] | 孙戬, 王彤, 陈云辉, 林何, 刘晖, 成小乐. 织物增强橡胶基复合材料本构模型及其应用[J]. 纺织学报, 2025, 46(01): 95-102. |
[7] | 郭琦, 吴宁, 孟影, 安达, 黄建龙, 陈利. 变厚度头锥体织物的工艺设计与验证[J]. 纺织学报, 2024, 45(12): 98-108. |
[8] | 余晓佩, 沈伟, 陈立峰, 竺铝涛. 玻璃纤维复合材料损伤裂纹修复及其性能评价[J]. 纺织学报, 2024, 45(11): 121-127. |
[9] | 王理杰, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 衣康酸聚乙二醇单醚酯封端水性聚氨酯织物涂层剂的制备及其性能[J]. 纺织学报, 2024, 45(10): 145-151. |
[10] | 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160. |
[11] | 姜梦敏, 王一璠, 金欣, 王闻宇, 肖长发. 聚吡咯共轭结构对碳纤维增强树脂基复合材料热循环稳定性能的影响[J]. 纺织学报, 2024, 45(10): 23-30. |
[12] | 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120. |
[13] | 周领辉, 祝成炎, 金肖克, 马雷雷, 陈海相, 田伟. 基于三维显微镜成像的墨西哥红酸枝内部纤维分布及结构形态表征[J]. 纺织学报, 2024, 45(09): 56-62. |
[14] | 吕丽华, 庞现柯, 刘澳. 变厚度三维机织复合材料的抗冲击性能[J]. 纺织学报, 2024, 45(09): 91-96. |
[15] | 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|