纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 197-206.doi: 10.13475/j.fzxb.20240905101

• 染整工程 • 上一篇    下一篇

基于山嵛酸和ZIF-8改性的超疏水防结冰棉织物

袁华彬, 王沂沨, 王家朋, 向永翾, 陈国强, 邢铁玲()   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215006
  • 收稿日期:2024-09-25 修回日期:2024-10-17 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 邢铁玲(1974—),女,教授,博士。主要研究方向为纺织品功能改性、植物多酚化学及其应用研究以及生态染整加工技术。E-mail:xingtieling@suda.edu.cn
  • 作者简介:袁华彬(1994—),男,博士生。主要研究方向为金属有机框架材料的制备和应用、纺织品功能改性。
    第一联系人:

    说 明:本文入围中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    国家自然科学基金项目(51973144);国家留学基金项目(202406920056);江苏省纺织印染节能减排与清洁生产工程研究中心项目(2023-ERC-9011580823);江苏省研究生科研与实践创新计划项目(KYCX24_3326)

Modification of cotton fabrics by behenic acid and ZIF-8 for superhydrophobic and anti-icing performance

YUAN Huabin, WANG Yifeng, WANG Jiapeng, XIANG Yongxuan, CHEN Guoqiang, XING Tieling()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • Received:2024-09-25 Revised:2024-10-17 Published:2025-02-15 Online:2025-03-04

摘要:

为解决棉织物因结冰导致的保暖性能下降和人体热损失加剧的问题,利用生物质材料山嵛酸和沸石咪唑酯骨架材料(ZIF-8)对棉织物进行改性,制备出具有超疏水和防结冰性能的山嵛酸/ZIF-8改性棉织物。通过扫描电子显微镜、傅里叶红外光谱以及X射线光电子能谱对改性棉织物的表面形貌和化学结构进行分析,并对其浸润性、稳定性和防结冰性能进行表征。结果显示:改性后棉织物表面具有独特的纳米花状结构,接触角高达160.6°,滑动角仅为2°,展现出优异的自清洁和防沾污性能;山嵛酸/ZIF-8改性棉织物还表现出卓越的物理和化学稳定性,能够承受600 min的连续水洗和20次砂纸磨损,并在100 ℃高温、-20 ℃低温、强碱、强酸及有机溶剂等极端环境下长期保持稳定;该改性棉织物在-15 ℃和-20 ℃环境中延缓结冰时间分别为713.2 s和351.6 s,表现出优异的防结冰性能。此方法不仅拓宽了ZIF-8和生物质材料在纺织品上的应用空间,还为开发防结冰纺织品提供了新思路。

关键词: 山嵛酸, 沸石咪唑酯骨架材料, 棉织物, 超疏水, 自清洁, 防沾污, 防结冰

Abstract:

Objective The post-freezing stiffness of cotton fabrics not only impairs user mobility but also enhances the risk of hypothermia by exacerbating heat loss, posing potential harm to wearer. The hydrophobic modification of cotton fabrics has been identified as an effective strategy to impart anti-icing capabilities. This study employs biomass materials such as behenic acid and zeolitic imidazolate frameworks (ZIF-8) to modify the cotton fabrics, producing superhydrophobic textiles with enhanced anti-icing properties.

Method Behenic acid was utilized to induce morphological changes in ZIF-8 on the cotton fabric surface to reduce surface energy, resulting in the creation of superhydrophobic and anti-icing fabrics. The study comprehensively analyzed the surface morphology and chemical composition of the fabric through scanning electron microscopy and X-ray photoelectron spectroscopy. In addition, the stability, wettability, and anti-icing performance of the modified cotton fabric were also studied.

Results The concentration of behenic acid and treatment duration were found to influence significantly the nanoflower structure and superhydrophobic properties of the modified cotton fabric. The optimal conditions were identified which is a behenic acid concentration of 6 g/L and a treatment duration of 120 min. Under these conditions, a dense nanoflower morphology was achieved, with a contact angle of 160.6° and a sliding angle of only 2°. The formation of the nanoflower structure was primarily attributed to the self-assembly between ZIF-8 and behenic acid. Specifically, the Zn2+ in ZIF-8 bound with the carboxyl groups at the ends of behenic acid chains and the hydrophobic interactions between the long chains of behenic acid promoted growth in specific directions, ultimately forming the nanoflower morphology. Infrared spectroscopy revealed new peaks at 419 cm-1 (Zn—N), 991 cm-1 (C—N), 1 581 cm-1 (C—N), 2 846 cm-1 (—CH2), and 2 916 cm-1 (—CH3), confirming the effective modification of cotton fabric by behenic acid and ZIF-8. Even when immersed in a high-concentration methylene blue solution, the surface of the modified cotton fabric showed no signs of contamination. Furthermore, dust on the surface of the modified cotton fabric could be easily removed with water flow, demonstrating excellent self-cleaning and anti-fouling properties. Due to the structural stability of ZIF-8 and the ZnO layer formed at high temperatures, the modified cotton fabric exhibited exceptional thermal stability, maintaining a high residual mass even at 700 ℃. Following modification with behenic acid and ZIF-8, the tensile strength of the modified cotton fabric was significantly enhanced, while its air permeability remained comparable to that of the original cotton fabric. The significant contact angle (160.6°) indicated a high energy barrier for ice formation, with freezing times delayed to 713.2 s at -15 ℃ and 351.6 s at -20 ℃. The modified cotton fabric also demonstrated excellent physical and chemical stability. After 20 cycles of abrasion with 1 000-grit sandpaper and treatment at -20 ℃ and 100 ℃ for 10 h, the contact angle remained above 150°, and the sliding angle was less than 10°. Even after 600 min of continuous washing, the hydrophobic properties were retained. Additionally, the superhydrophobic performance remained stable after 24 h of immersion in strong acid (pH=1), strong base (pH=13), and various organic solvents such as tetrahydrofuran, cyclohexane, methanol, carbon tetrachloride, and ethanol.

Conclusion The combination of behenic acid and ZIF-8 effectively creates a superhydrophobic material that possesses self-cleaning, anti-fouling, and anti-icing capabilities. The presence of nanoflower structures and superhydrophobic properties relies on the concentration of behenic acid and treatment duration, with optimal conditions at 6 g/L and 120 min. The formation of nanoflowers on the surface of the modified cotton fabric is primarily attributed to the self-assembly of ZIF-8 and behenic acid. The modified fabric exhibits outstanding physical and chemical stability, providing a new approach for developing anti-icing textiles, with freezing delay times in -15 ℃ and -20 ℃ environments recorded at 713.2 s and 351.6 s, respectively.

Key words: functional textile, behenic acid, zeolitic imidazolate frameworks, cotton fabric, superhydrophobicity, self-cleaning, anti-fouling, anti-icing

中图分类号: 

  • TS195.5

图1

棉织物改性前后的形貌及山嵛酸/ZIF-8/棉的接触角和滚动角"

图2

山嵛酸质量浓度和反应时间对山嵛酸/ZIF-8/棉表面微观形貌和接触角的影响"

图3

山嵛酸/ZIF-8/棉的红外光谱图,XPS图谱以及C 1s的高分辨率图谱"

图4

原棉、ZIF-8/棉以及山嵛酸/ZIF-8/棉的表面粗糙度"

图5

山嵛酸/ZIF-8/棉的热重曲线、应力-应变曲线以及水蒸发量随时间的变化"

图6

山嵛酸/ZIF-8/棉的浸润性、防沾污以及自清洁性能测试照片"

图7

在不同环境温度下山嵛酸/ZIF-8/棉表面水滴的温度随时间的变化"

图8

磨损次数、持续水洗时间、低温处理、高温处理、酸碱溶液以及有机溶剂浸泡对山嵛酸/ZIF-8/棉的θCA和θSA的影响"

[1] WANG L, GONG Q H, ZHAN S H, et al. Robust anti-icing performance of a flexible superhydrophobic sur-face[J]. Advanced Materials, 2016, 28(35): 7729-7735.
[2] TONG W, HAN M M, MA C, et al. Empowering photovoltaic panel anti-icing: superhydrophobic organic composite coating with in situ photothermal and transparency[J]. ACS Applied Materials & Interfaces, 2024, 16(24): 31567-31575.
[3] LI W L, LIU K X, ZHANG Y X, et al. A facile strategy to prepare robust self-healable superhydrophobic fabrics with self-cleaning, anti-icing, UV resistance, and antibacterial properties[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.137195.
[4] ZHANG S N, ZHANG F C, ZHANG Z B, et al. An electroless nickel plating fabric coated with photothermal Chinese ink for powerful passive anti-icing/icephobic and fast active deicing[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.138328.
[5] OBERLI L, CARUSO D, HALL C, et al. Condensation and freezing of droplets on superhydrophobic sur-faces[J]. Advances in Colloid and Interface Science, 2014, 210(2): 47-57.
[6] 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(8): 109-114.
LI Weibin, ZHANG Cheng, LIU Jun. Preparation of superhydrophobic coated cotton fabrics for oil-water separation[J]. Journal of Textile Research, 2021, 42(8): 109-114.
[7] 郝尚, 谢源, 翁佳丽, 等. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(2): 168-173.
HAO Shang, XIE Yuan, WENG Jiali, et al. Construction of superhydrophobic surface of cotton fabrics via dissolving etching[J]. Journal of Textile Research, 2021, 42(2): 168-173.
[8] PAKDEL E, ZHAO H, WANG J F, et al. Superhydrophobic and photocatalytic self-cleaning cotton fabric using flower-like N-doped TiO2/PDMS coating[J]. Cellulose, 2021, 28(13): 8807-8820.
[9] NABIPOUR H, WANG X, SONG L, et al. Graphene oxide/zeolitic imidazolate frameworks-8 coating for cotton fabrics with highly flame retardant, self-cleaning and efficient oil/water separation performances[J]. Materials Chemistry and Physics, 2020. DOI: 10.1016/j.matchemphys.2020.123656.
[10] XIONG J Q, LIN M F, WANG J X, et al. Wearable all-fabric-based triboelectric generator for water energy harvesting[J]. Advanced Energy Materials, 2017. DOI: 10.1002/aenm.201701243.
[11] WU C D, ZHAO M. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201605446.
[12] 梁淑君, 孙钰滢, 刘晋桤, 等. 基于ZIF-8的聚二甲基硅氧烷复合膜的研制[J]. 有机硅材料, 2021, 35(5): 11-15.
LIANG Shujun, SUN Yuying, LIU Jinqi, et al. Development of polydimethylsiloxane composite film based on ZIF-8[J]. Organic Silicon Materials, 2021, 35 (5): 11-15.
[13] CAO H, MAO Y P, WANG W L, et al. ZIF-8 based dual scale superhydrophobic membrane for membrane distillation[J]. Desalination, 2023. DOI: 10.1016/j.desal.2023.116373.
[14] CHEN Y F, LI S Q, PEI X K, et al. A solvent-free hot-pressing method for preparing metal-organic-framework coatings[J]. Angewandte Chemie International Edition, 2016, 55(10): 3419-3423.
[15] CHEN H Y, WANG F F, FAN H Z, et al. Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2020.127343.
[16] HOU Y B, XU Z M, YUAN Y, et al. Nanosized bimetal-organic frameworks as robust coating for multi-functional flexible polyurethane foam: rapid oil-absorption and excellent fire safety[J]. Composites Science and Technology, 2019, 177(2): 66-72.
[17] HE Z W, WU H Q, SHI Z, et al. Mussel-inspired durable superhydrophobic/superoleophilic MOF-PU sponge with high chemical stability, efficient oil/water separation and excellent anti-icing properties[J]. Colloids and Surfaces A(Physicochemical and Engineering Aspects), 2022. DOI: 10.1016/j.colsurfa.2022.129142.
[18] LI W R, SHI J F, ZHAO Y, et al. Superhydrophobic metal-organic framework nanocoating induced by metal-phenolic networks for oily water treatment[J]. Acs Sustainable Chemistry & Engineering, 2020, 8(4): 1831-1834.
[19] LI W L, ZHANG Y X, YU Z, et al. In situ growth of a stable metal-organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications[J]. ACS Nano, 2022, 16(9): 14779-14791.
doi: 10.1021/acsnano.2c05624 pmid: 36103395
[20] DALAPATI R, NANDI S, GOGOI C, et al. Metal-organic framework (MOF) derived recyclable, superhydrophobic composite of cotton fabrics for the facile removal of oil spills[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8563-8573.
[21] LU L, HU C C, ZHU Y J, et al. Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal-organic framework[J]. Cellulose, 2018, 25(7): 4223-4238.
[22] YANG R, LIU B Z, YU F Y, et al. Superhydrophobic cellulose paper with sustained antibacterial activity prepared by in-situ growth of carvacrol-loaded zinc-based metal organic framework nanorods for food packaging application[J]. International Journal of Biological Macromolecules, 2023. DOI: 10.1016/j.ijbiomac.2023.123712.
[23] GOGOI C, RANA A, GHOSH S, et al. Superhydrophobic self-cleaning composite of a metal-organic framework with polypropylene fabric for efficient removal of oils from oil-water mixtures and emul-sions[J]. ACS Applied Nano Materials, 2022, 5(7): 10003-10014.
[24] DALAPATI R, NANDI S, GOGOI C, et al. Metal-organic framework (MOF) derived recyclable, superhydrophobic composite of cotton fabrics for the facile removal of oil spills[J]. ACS Applied Materials and Interfaces, 2021, 13: 8563-8573.
[25] AHMAD N, RASHEED S, ALI T, et al. Superoleophilic cotton fabric decorated with hydrophobic Zn/Zr MOF nanoflowers for efficient self-cleaning, UV-blocking, and oil-water separation[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.149991.
[26] BINNEMANS K, VAN DEUN R, THIJS B, et al. Structure and mesomorphism of silver alkanoates[J]. Chemistry of Materials, 2004, 16(10): 2021-2027.
[27] AHMAD N, RASHEED S, AHMED K, et al. Facile two-step functionalization of multifunctional superhydrophobic cotton fabric for UV-blocking, self cleaning, antibacterial, and oil-water separation[J]. Separation and Purification Technology, 2023. DOI: 10.1016/j.seppur.2022.122626.
[28] YUAN H B, ZHAO M M, LEI X, et al. Fabrication of multifunctional cotton fabric with "pompon mum" shaped surface by ZIF-8 for applications in oil-water separation and anti-icing[J]. Progress in Organic Coatings, 2024. DOI: 10.1016/j.porgcoat.2023.108056.
[29] YUAN H B, CHENG J, SHA D S, et al. Fabrication of multi-functional and breathable superhydrophobic cotton fabric based on curcumin/ZIF-8 through mild thiol-ene click chemistry reaction[J]. Applied Surface Science, 2024. DOI: 10.1016/j.apsusc.2023.158882.
[30] PELLETIER I, BOURQUE H, BUFFETEAU T, et al. Study by infrared spectroscopy of ultrathin films of behenic acid methyl ester on solid substrates and at the air/water interface[J]. The Journal of Physical Chemistry B, 2002, 106(8): 1968-1976.
[31] YIN Z Z, CHEN X X, ZHOU T H, et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation[J]. Separation and Purification Technology, 2022. DOI: 10.1016/j.seppur.2022.120504.
[32] BU N T, WANG L, ZHANG D, et al. Highly hydrophobic gelatin nanocomposite film assisted by Nano-ZnO/(3-aminopropyl) triethoxysilane/stearic acid coating for liquid food packaging[J]. ACS Applied Materials & Interfaces, 2023, 15(44): 51713-51726.
[33] DENG S S, WANG F, WANG M H, et al. Integrating multifunctional highly efficient flame-retardant coatings with superhydrophobicity, antibacterial property on cotton fabric[J]. International Journal of Biological Macromolecules, 2023. DOI: 10.1016/j.ijbiomac.2023.127022.
[34] AHMAD N, RASHEED S, NABEEL M I, et al. Stearic acid and CeO2 nanoparticles co-functionalized cotton fabric with enhanced UV-block, self-cleaning, water-repellent, and antibacterial properties[J]. Langmuir, 2023, 39(33): 11571-11581.
[35] XU X Y, SHI S Z, SUN B H, et al. Agricultural light-converting anti-icing superhydrophobic coating for plant growth promotion[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.153286.
[1] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[2] 旋湘桃, 张辉, 车秋玲, 魏乾阳, 张劲峰, 王毅. 自清洁织物的研究进展[J]. 纺织学报, 2025, 46(01): 227-237.
[3] 巢探宇, 叶韵, 李娜, 廖思含, 马琪凯, 崔莉. 基于脂肪酶固定化的棉织物易去油污整理及其应用[J]. 纺织学报, 2025, 46(01): 130-137.
[4] 武浩, 周嫦娥, 高振清, 冯嘉禾. 基于还原-氧化体系的活性染料染色棉织物剥色[J]. 纺织学报, 2024, 45(12): 128-136.
[5] 王心雨, 郭明明, 张乐乐, 郑伟杰, AMJAD Farooq, 王宗乾. 耐久性抗菌超疏水棉织物的制备及其性能[J]. 纺织学报, 2024, 45(11): 170-177.
[6] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[7] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[8] 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128.
[9] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[10] 李成才, 朱登辉, 朱海霖, 郭玉海. 聚四氟乙烯膜的超疏水改性及应用研究进展[J]. 纺织学报, 2024, 45(08): 65-71.
[11] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
[12] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[13] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[14] 薛宝霞, 杨色, 张春艳, 刘晶, 刘勇, 程伟, 张利, 牛梅. 聚氮异丙基丙烯酰胺抗菌水凝胶复合棉织物的制备及其性能[J]. 纺织学报, 2024, 45(05): 129-137.
[15] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
Viewed
Full text
22
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 13 0 0 9

  From Others local
  Times 12 10
  Rate 55% 45%

Abstract
52
Just accepted Online first Issue
0 0 52
  From Others local
  Times 42 10
  Rate 81% 19%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!