纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 197-206.doi: 10.13475/j.fzxb.20240905101
袁华彬, 王沂沨, 王家朋, 向永翾, 陈国强, 邢铁玲()
YUAN Huabin, WANG Yifeng, WANG Jiapeng, XIANG Yongxuan, CHEN Guoqiang, XING Tieling()
摘要:
为解决棉织物因结冰导致的保暖性能下降和人体热损失加剧的问题,利用生物质材料山嵛酸和沸石咪唑酯骨架材料(ZIF-8)对棉织物进行改性,制备出具有超疏水和防结冰性能的山嵛酸/ZIF-8改性棉织物。通过扫描电子显微镜、傅里叶红外光谱以及X射线光电子能谱对改性棉织物的表面形貌和化学结构进行分析,并对其浸润性、稳定性和防结冰性能进行表征。结果显示:改性后棉织物表面具有独特的纳米花状结构,接触角高达160.6°,滑动角仅为2°,展现出优异的自清洁和防沾污性能;山嵛酸/ZIF-8改性棉织物还表现出卓越的物理和化学稳定性,能够承受600 min的连续水洗和20次砂纸磨损,并在100 ℃高温、-20 ℃低温、强碱、强酸及有机溶剂等极端环境下长期保持稳定;该改性棉织物在-15 ℃和-20 ℃环境中延缓结冰时间分别为713.2 s和351.6 s,表现出优异的防结冰性能。此方法不仅拓宽了ZIF-8和生物质材料在纺织品上的应用空间,还为开发防结冰纺织品提供了新思路。
中图分类号:
[1] | WANG L, GONG Q H, ZHAN S H, et al. Robust anti-icing performance of a flexible superhydrophobic sur-face[J]. Advanced Materials, 2016, 28(35): 7729-7735. |
[2] | TONG W, HAN M M, MA C, et al. Empowering photovoltaic panel anti-icing: superhydrophobic organic composite coating with in situ photothermal and transparency[J]. ACS Applied Materials & Interfaces, 2024, 16(24): 31567-31575. |
[3] | LI W L, LIU K X, ZHANG Y X, et al. A facile strategy to prepare robust self-healable superhydrophobic fabrics with self-cleaning, anti-icing, UV resistance, and antibacterial properties[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.137195. |
[4] | ZHANG S N, ZHANG F C, ZHANG Z B, et al. An electroless nickel plating fabric coated with photothermal Chinese ink for powerful passive anti-icing/icephobic and fast active deicing[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.138328. |
[5] | OBERLI L, CARUSO D, HALL C, et al. Condensation and freezing of droplets on superhydrophobic sur-faces[J]. Advances in Colloid and Interface Science, 2014, 210(2): 47-57. |
[6] | 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(8): 109-114. |
LI Weibin, ZHANG Cheng, LIU Jun. Preparation of superhydrophobic coated cotton fabrics for oil-water separation[J]. Journal of Textile Research, 2021, 42(8): 109-114. | |
[7] | 郝尚, 谢源, 翁佳丽, 等. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(2): 168-173. |
HAO Shang, XIE Yuan, WENG Jiali, et al. Construction of superhydrophobic surface of cotton fabrics via dissolving etching[J]. Journal of Textile Research, 2021, 42(2): 168-173. | |
[8] | PAKDEL E, ZHAO H, WANG J F, et al. Superhydrophobic and photocatalytic self-cleaning cotton fabric using flower-like N-doped TiO2/PDMS coating[J]. Cellulose, 2021, 28(13): 8807-8820. |
[9] | NABIPOUR H, WANG X, SONG L, et al. Graphene oxide/zeolitic imidazolate frameworks-8 coating for cotton fabrics with highly flame retardant, self-cleaning and efficient oil/water separation performances[J]. Materials Chemistry and Physics, 2020. DOI: 10.1016/j.matchemphys.2020.123656. |
[10] | XIONG J Q, LIN M F, WANG J X, et al. Wearable all-fabric-based triboelectric generator for water energy harvesting[J]. Advanced Energy Materials, 2017. DOI: 10.1002/aenm.201701243. |
[11] | WU C D, ZHAO M. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201605446. |
[12] | 梁淑君, 孙钰滢, 刘晋桤, 等. 基于ZIF-8的聚二甲基硅氧烷复合膜的研制[J]. 有机硅材料, 2021, 35(5): 11-15. |
LIANG Shujun, SUN Yuying, LIU Jinqi, et al. Development of polydimethylsiloxane composite film based on ZIF-8[J]. Organic Silicon Materials, 2021, 35 (5): 11-15. | |
[13] | CAO H, MAO Y P, WANG W L, et al. ZIF-8 based dual scale superhydrophobic membrane for membrane distillation[J]. Desalination, 2023. DOI: 10.1016/j.desal.2023.116373. |
[14] | CHEN Y F, LI S Q, PEI X K, et al. A solvent-free hot-pressing method for preparing metal-organic-framework coatings[J]. Angewandte Chemie International Edition, 2016, 55(10): 3419-3423. |
[15] | CHEN H Y, WANG F F, FAN H Z, et al. Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2020.127343. |
[16] | HOU Y B, XU Z M, YUAN Y, et al. Nanosized bimetal-organic frameworks as robust coating for multi-functional flexible polyurethane foam: rapid oil-absorption and excellent fire safety[J]. Composites Science and Technology, 2019, 177(2): 66-72. |
[17] | HE Z W, WU H Q, SHI Z, et al. Mussel-inspired durable superhydrophobic/superoleophilic MOF-PU sponge with high chemical stability, efficient oil/water separation and excellent anti-icing properties[J]. Colloids and Surfaces A(Physicochemical and Engineering Aspects), 2022. DOI: 10.1016/j.colsurfa.2022.129142. |
[18] | LI W R, SHI J F, ZHAO Y, et al. Superhydrophobic metal-organic framework nanocoating induced by metal-phenolic networks for oily water treatment[J]. Acs Sustainable Chemistry & Engineering, 2020, 8(4): 1831-1834. |
[19] |
LI W L, ZHANG Y X, YU Z, et al. In situ growth of a stable metal-organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications[J]. ACS Nano, 2022, 16(9): 14779-14791.
doi: 10.1021/acsnano.2c05624 pmid: 36103395 |
[20] | DALAPATI R, NANDI S, GOGOI C, et al. Metal-organic framework (MOF) derived recyclable, superhydrophobic composite of cotton fabrics for the facile removal of oil spills[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8563-8573. |
[21] | LU L, HU C C, ZHU Y J, et al. Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal-organic framework[J]. Cellulose, 2018, 25(7): 4223-4238. |
[22] | YANG R, LIU B Z, YU F Y, et al. Superhydrophobic cellulose paper with sustained antibacterial activity prepared by in-situ growth of carvacrol-loaded zinc-based metal organic framework nanorods for food packaging application[J]. International Journal of Biological Macromolecules, 2023. DOI: 10.1016/j.ijbiomac.2023.123712. |
[23] | GOGOI C, RANA A, GHOSH S, et al. Superhydrophobic self-cleaning composite of a metal-organic framework with polypropylene fabric for efficient removal of oils from oil-water mixtures and emul-sions[J]. ACS Applied Nano Materials, 2022, 5(7): 10003-10014. |
[24] | DALAPATI R, NANDI S, GOGOI C, et al. Metal-organic framework (MOF) derived recyclable, superhydrophobic composite of cotton fabrics for the facile removal of oil spills[J]. ACS Applied Materials and Interfaces, 2021, 13: 8563-8573. |
[25] | AHMAD N, RASHEED S, ALI T, et al. Superoleophilic cotton fabric decorated with hydrophobic Zn/Zr MOF nanoflowers for efficient self-cleaning, UV-blocking, and oil-water separation[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.149991. |
[26] | BINNEMANS K, VAN DEUN R, THIJS B, et al. Structure and mesomorphism of silver alkanoates[J]. Chemistry of Materials, 2004, 16(10): 2021-2027. |
[27] | AHMAD N, RASHEED S, AHMED K, et al. Facile two-step functionalization of multifunctional superhydrophobic cotton fabric for UV-blocking, self cleaning, antibacterial, and oil-water separation[J]. Separation and Purification Technology, 2023. DOI: 10.1016/j.seppur.2022.122626. |
[28] | YUAN H B, ZHAO M M, LEI X, et al. Fabrication of multifunctional cotton fabric with "pompon mum" shaped surface by ZIF-8 for applications in oil-water separation and anti-icing[J]. Progress in Organic Coatings, 2024. DOI: 10.1016/j.porgcoat.2023.108056. |
[29] | YUAN H B, CHENG J, SHA D S, et al. Fabrication of multi-functional and breathable superhydrophobic cotton fabric based on curcumin/ZIF-8 through mild thiol-ene click chemistry reaction[J]. Applied Surface Science, 2024. DOI: 10.1016/j.apsusc.2023.158882. |
[30] | PELLETIER I, BOURQUE H, BUFFETEAU T, et al. Study by infrared spectroscopy of ultrathin films of behenic acid methyl ester on solid substrates and at the air/water interface[J]. The Journal of Physical Chemistry B, 2002, 106(8): 1968-1976. |
[31] | YIN Z Z, CHEN X X, ZHOU T H, et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation[J]. Separation and Purification Technology, 2022. DOI: 10.1016/j.seppur.2022.120504. |
[32] | BU N T, WANG L, ZHANG D, et al. Highly hydrophobic gelatin nanocomposite film assisted by Nano-ZnO/(3-aminopropyl) triethoxysilane/stearic acid coating for liquid food packaging[J]. ACS Applied Materials & Interfaces, 2023, 15(44): 51713-51726. |
[33] | DENG S S, WANG F, WANG M H, et al. Integrating multifunctional highly efficient flame-retardant coatings with superhydrophobicity, antibacterial property on cotton fabric[J]. International Journal of Biological Macromolecules, 2023. DOI: 10.1016/j.ijbiomac.2023.127022. |
[34] | AHMAD N, RASHEED S, NABEEL M I, et al. Stearic acid and CeO2 nanoparticles co-functionalized cotton fabric with enhanced UV-block, self-cleaning, water-repellent, and antibacterial properties[J]. Langmuir, 2023, 39(33): 11571-11581. |
[35] | XU X Y, SHI S Z, SUN B H, et al. Agricultural light-converting anti-icing superhydrophobic coating for plant growth promotion[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.153286. |
[1] | 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187. |
[2] | 旋湘桃, 张辉, 车秋玲, 魏乾阳, 张劲峰, 王毅. 自清洁织物的研究进展[J]. 纺织学报, 2025, 46(01): 227-237. |
[3] | 巢探宇, 叶韵, 李娜, 廖思含, 马琪凯, 崔莉. 基于脂肪酶固定化的棉织物易去油污整理及其应用[J]. 纺织学报, 2025, 46(01): 130-137. |
[4] | 武浩, 周嫦娥, 高振清, 冯嘉禾. 基于还原-氧化体系的活性染料染色棉织物剥色[J]. 纺织学报, 2024, 45(12): 128-136. |
[5] | 王心雨, 郭明明, 张乐乐, 郑伟杰, AMJAD Farooq, 王宗乾. 耐久性抗菌超疏水棉织物的制备及其性能[J]. 纺织学报, 2024, 45(11): 170-177. |
[6] | 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160. |
[7] | 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169. |
[8] | 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128. |
[9] | 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214. |
[10] | 李成才, 朱登辉, 朱海霖, 郭玉海. 聚四氟乙烯膜的超疏水改性及应用研究进展[J]. 纺织学报, 2024, 45(08): 65-71. |
[11] | 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98. |
[12] | 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129. |
[13] | 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120. |
[14] | 薛宝霞, 杨色, 张春艳, 刘晶, 刘勇, 程伟, 张利, 牛梅. 聚氮异丙基丙烯酰胺抗菌水凝胶复合棉织物的制备及其性能[J]. 纺织学报, 2024, 45(05): 129-137. |
[15] | 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|