纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 161-169.doi: 10.13475/j.fzxb.20240905201

• 染整工程 • 上一篇    下一篇

基于漆酶一步催化法的羊毛织物原位染色及阻燃功能化

郭庆1,2,3, 毛阳顺1, 任亚杰1,2,3, 刘济民1,2,3, 王怀芳1,2,3(), 朱平1,2,3   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 功能纺织品与先进材料研究院, 山东 青岛 266071
    3.青岛大学 生物多糖纤维成形与生态纺织国家重点实验室, 山东 青岛 266071
  • 收稿日期:2024-09-25 修回日期:2024-10-30 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 王怀芳(1980—),女,副教授,博士。主要研究方向为功能纤维及功能纺织品。E-mail: hfwang1980@163.com
  • 作者简介:郭庆(1999—),男,硕士生。主要研究方向为功能纤维及功能纺织品。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    国家自然科学基金重大项目(51991354)

Simultaneous in-situ dyeing and flame retardant functionalization of wool fabrics based on laccase catalysis

GUO Qing1,2,3, MAO Yangshun1, REN Yajie1,2,3, LIU Jimin1,2,3, WANG Huaifang1,2,3(), ZHU Ping1,2,3   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    3. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2024-09-25 Revised:2024-10-30 Published:2025-02-15 Online:2025-03-04

摘要:

针对羊毛织物的传统染色及阻燃整理工艺流程复杂、条件苛刻、损伤织物并可能污染环境等问题,采用生物酶法,以没食子酸(GA)和9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)为底物,通过漆酶催化作用,在温和条件下采用一步法在羊毛织物上同步实现染色和阻燃功能化。借助紫外-可见光谱仪、测色仪、氧指数仪、扫描电子显微镜、能量色散谱仪及红外光谱仪等对GA、DOPO、GA/DOPO混合物反应液及其处理后织物的形貌和化学组成进行测试与表征,对GA与DOPO及羊毛的反应机制进行分析,并对处理后织物的染色性能、阻燃性能、热稳定性、强力及手感性能等进行测试。结果表明:GA与DOPO之间能够发生共聚反应,并与羊毛通过接枝交联附着在羊毛织物表面,赋予其一定牢度的颜色与阻燃性能;经GA和DOPO共同处理后羊毛织物呈褐色,K/S值达到4.98,极限氧指数达到27.5%,织物强力较未处理羊毛提升46%左右,且处理得到的织物样品仍保持羊毛优良的手感。

关键词: 漆酶, 没食子酸, 9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物, 羊毛织物, 染色, 阻燃, 功能纺织品

Abstract:

Objective Wool fabrics is widely used in apparel, upholstery and industrial applications due to properties such as comfort, biocompatibility, breathability, and hygroscopicity. Conventional dyeing methods for wool products require boiling at high temperatures, consuming large amounts of energy and chemicals, and exerting a detrimental effect on the fabric's inherent properties. In addition, durable flame retardancy for wool fabrics are generally produced by baking phosphorus-containing compounds, usually in the presence of cross-linking agents, at high temperature, or by treating wool fabrics with metal complexes, such as potassium hexafluorotitanic, which lead to yellowing of the fabrics, damage to strength, and heavy metal problems. Consequently, the development of facile and eco-friendly dyeing and flame retardant methods for wool fabrics is essential.

Method A laccase-catalyzed one-step process using gallic acid (GA) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO)as substrates was used to achieve simultaneous dyeing and flame retardant functionalization of wool fabrics. The reaction mechanism of GA and DOPO was analyzed with help of UV-visible spectrometer. The morphology, chemical composition, color and the flame retardancy of the treated fabrics were tested and characterized by means of scanning electron microscope, EDS, infrared spectrometer, colorimeter and oxygen index meter.

Results The results demonstrated that the use of laccase as a catalyst enabled the grafting, cross-linking and absorption of GA and DOPO with wool, facilitating the in-situ dyeing and fire retardant modification of wool. The ultraviolet spectroscopy analysis and the color of the samples indicated that the copolymerization of DOPO and GA hinders the polymerization of GA, resulting in a weakened copolymerization and a lower K/S value for GA-DOPO-Wool in comparison to GA-Wool. The limit oxygen index and vertical burning tests demonstrated the effective flame retardant properties of the GA-DOPO-Wool. This phenomenon may be attributed to the reaction between DOPO and GA or GA polymers, which acted as a bridge between the wool and DOPO, thereby increasing the amount of DOPO grafted and adsorbed onto the wool fibers. The results of the EDS and FT-IR tests provided further validation of the interfacial reaction between the substrate and the wool. The thermal gravimetric analysis demonstrated that GA treated wool has an enhanced heat stability, possibly due to the cross-linking reaction between GA and the side chains of the wool. Furthermore, the decomposition of DOPO produced phosphoric and phosphoric acids upon heating and facilitated the dehydration and combustion of wool, forming a barrier that delays the degradation of wool fibers. The color fastness and flame retardancy of GA-DOPO-Wool were found to be excellent, even after 30 times home laundering cycle. Furthermore, the intermolecular bonding between the substrate and the wool fibers resulted in an approximate 46% increase in tensile strength of the treated wool following coloration and chemical modification, accompanied by a slight increase in elongation. Additionally, the data on the tactile properties of the treated wool indicated that the wool retained its inherent excellent tactile quality despite a slight decrease in surface smoothness.

Conclusion The copolymerization of GA with DOPO is catalyzed by laccase and the resulted polymer is grafted and crosslinked to the wool. The yielded compound is shown to adhere to the surface of the wool, imparting a dark brown color and flame retardant properties to the wool. The K/S value of the treated wool is 4.98, and the ultimate oxygen index is 27.5%. Furthermore, the treated fabrics exhibits excellent water resistance. After the treatment, the mechanical properties of wool fabrics are enhanced possibly due to the cross-linking with the wool. It is worth noting that the process presented in this paper does not affect the fabric hand, which is a merit of the treated fabrics for applications in daily life and industry.

Key words: laccase, gallic acid, 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide, wool fabric, dyeing, flame retardant, functional textile

中图分类号: 

  • TS195.5

图1

染色阻燃羊毛织物的制备过程"

图2

反应液随时间变化的紫外-可见吸收光谱及相应时间的反应液照片"

图3

羊毛织物经不同底物处理后的K/S值"

图4

羊毛织物经不同底物处理后的LOI值"

图5

羊毛织物在空气中垂直燃烧"

表1

处理前后羊毛织物在空气中燃烧的续燃、阴燃时间及损毁长度"

样品处理 续燃时间/s 阴燃时间/s 损毁长度/mm
未处理 30 3 30
GA处理 34 5 30
DOPO处理 20 10 21
GA/DOPO处理 0 20 6

图6

处理前后羊毛织物的SEM照片"

图7

处理前后羊毛织物的EDS元素分布图"

表2

处理前后羊毛织物的表面元素含量"

样品 元素含量/%
C N O S P
未处理羊毛 48.74 16.30 29.34 8.75 0.60
染色阻燃羊毛 52.97 10.46 23.05 5.62 4.77

图8

未处理羊毛与染色阻燃羊毛水洗前后的ATR-FTIR谱图"

图9

处理前后羊毛织物的TG与DTG曲线"

图10

循环洗涤次数对染色阻燃羊毛织物K/S值、LOI值以及垂直燃烧性能的影响"

图11

处理前后羊毛织物的拉伸应力-应变曲线"

表3

处理前后羊毛织物的物理性能"

样品 断裂强力/N 手感
经向 纬向 硬挺度 柔软度 光滑度
未处理羊毛 280±8.2 240±6.3 48.2 80.7 89.5
染色阻燃羊毛 410±7.6 320±6.1 47.1 80.8 84.3
[1] 吕小兰, 肖珍. 高牢度酸性染料固色剂DM-2539D[J]. 印染, 2020, 46(4): 49-53.
LÜ Xiaolan, XIAO Zhen. Fixing agent DM-2539D with high color fastness for acid dyes[J]. China Dyeing & Finishing, 2020, 46(4): 49-53.
[2] QIAO X, GAO W, LIU X, et al. Preparation of zeolitic imidazolate framework-67/wool fabric and its adsorption capacity for reactive dyes[J]. Journal of Environmental Management, 2022. DOI: 10.1016/j.jenvman.2022.115972.
[3] EL-SHISHTAWY R M, KAME M M. Iron complexed acid mordant dyes and their application on nylon 6 and wool[J]. Chemical Engineering & Technology, 2002, 25(8): 849-853.
[4] GUO S, WANG H, ZHANG C, et al. Durable and flame retardant finishing of the wool fabrics with the combination of hydroxyl-phosphoramidate and 1, 2, 3, 4-butane tetracarboxylic acid[J]. Thermochimica Acta, 2021. DOI: 10.1016/j.tca.2021.179031.
[5] WANG H, GUO S, ZHANG C, et al. Flame retardancy and thermal behavior of wool fabric treated with a phosphorus-containing polycarboxylic acid[J]. Polymers, 2021, 13(23): 4111-4111.
[6] CHENG X W, WANG Z Y, JIN W J, et al. Covalent flame-retardant functionalization of wool fabric using ammonium phytate with improved washing durabi-lity[J]. Industrial Crops and Products, 2022. DOI: 10.1016/j.indcrop.2022.115332.
[7] 王俐玮, 韩雪, 姜春如, 等. 漆酶催化酚类化合物在染整加工中的应用[J]. 黑龙江纺织, 2024, (2): 5-7, 11.
WANG Liwei, HAN Xue, JIANG Chunru, et al. Application of phenolic compounds catalyzed by laccase in dyeing and finishing process[J]. Heilongjiang Textiles, 2024, (2): 5-7, 11.
[8] KIM S, SILVA C, EVTUGUIN D V, et al. Polyoxometalate/laccase-mediated oxidative polymeri-zation of catechol for textile dyeing[J]. Applied Microbiology and Biotechnology, 2011, 89(4): 981-987.
[9] 李洁, 李宇, 苏静, 等. 羊毛纱线的漆酶催化茶多酚原位染色[J]. 印染, 2021, 47(7): 1-5.
LI Jie, LI Yu, SU Jing, et al. In-situ dyeing of wool via laccase catalyzed tea polyphenol[J]. China Dyeing & Finishing, 2021, 47(7): 1-5.
[10] 周春晓. 漆酶催化黄麻木质素产生ROS自由基的检测及其对接枝改性的影响[D]. 无锡: 江南大学, 2017: 4-7.
ZHOU Chunxiao. Determination of ROS free radicals produced by laccase-catalying jute lignin and their effects on grafting modification[D]. Wuxi: Jiangnan University, 2017: 4-7.
[11] 韩雪, 韩冬, 于乐, 等. 漆酶催化没食子酸染色阳离子改性棉织物的性能[J]. 印染, 2024, 50(3): 20-23.
HAN Xue, HAN Dong, YU Le, et al. Performance of cationic modified cotton fabric dyed with laccase catalyzed gallic acid[J]. China Dyeing & Finishing, 2024, 50(3): 20-23.
[12] 李玉芳, 李明. DOPO及其衍生物在聚合物中的阻燃应用研究进展[J]. 精细与专用化学品, 2021, 29(2): 41-44.
LI Yufang, LI Ming. Research process on flame retardant application of DOPO and its derivatives in polymers[J]. Fine and Specialty Chemicals, 2021, 29(2): 41-44.
[13] CHI Z, GUO Z, XU Z, et al. A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: synthesis, flame-retardant behavior and mechanism[J]. Polymer Degradation and Stability, 2020. DOI:10.1016/j.polymdegradstab.2020.109151.
[14] 付立云. 含DOPO基呋喃衍生物阻燃剂的合成及环氧树脂中的应用[D]. 广州: 华南理工大学, 2022: 7-9.
FU Liyun. Synthesis of DOPO-based furan derivative flame retardants and their application in epoxy resin[D]. Guangzhou: South China University of Technology, 2022: 7-9.
[15] SHREE Meenakshi K, PRADEEP Jaya Sudhan E, ANANDA Kumar S, et al. Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications[J]. Progress in Organic Coatings, 2011, 72(3): 402-409.
[16] XIONG B, SHEN R, GOTO M, et al. Highly selective 1,4- and 1,6-addition of P(O)-H compounds to p-quinones: a divergent method for the synthesis of C- and O-phosphoryl hydroquinone derivatives[J]. Chemistry-A European Journal, 2012, 18(52): 16902-16910.
doi: 10.1002/chem.201202074 pmid: 23143865
[17] 万元俊, 吴爽, 马晓峰, 等. DOPO及其衍生物的合成和阻燃性能研究进展[J]. 高分子通报, 2017(11): 45-53.
WAN Yuanjun, WU Shuang, MA Xiaofeng, et al. Research process on synthesis and flame retardancy propertiesof DOPO and its derivatives.[J]. Polymer Bulletin, 2017(11): 45-53.
[18] 冯旺龙, 金立维. DOPO-肉桂酰胺阻燃剂对聚乳酸性能影响[J]. 工程塑料应用, 2022, 50(2): 138-143.
FENG Wanglong, JIN Liwei. Effect of DOPO-cinnamamide flame retardant on properties of polylactic acid[J]. Engineering Plastics Application, 2022, 50(2): 138-143.
[19] GUO S, WANG H, ZHANG C, et al. Efficient suppression of flammability in wool fabrics via chelation with ferric[J]. Applied Surface Science, 2022. DOI: 10.1016/j.apsusc.2022.152808.
[20] SAKAI S, HIROSE K, TAGUCHI K, et al. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering[J]. Biomaterials, 2009, 30(20): 3371-3377.
doi: 10.1016/j.biomaterials.2009.03.030 pmid: 19345991
[21] 孙兆美, 鲍学铭, 刘月, 等. 漆酶催化棉织物表面多巴胺和Bis-AP-AF共聚及疏水性能研究[J]. 化工新型材料, 2019, 47(S1): 158-162.
SUN Zhaomei, BAO Xueming, LIU Yue, et al. Preparationg of hydrophobic cotton fabric via copolymerization of DA and Bis-AP-AF by laccase[J]. New Chemical Materials, 2019, 47(S1): 158-162.
[22] 徐豫松, 周杰, 甘佳怡, 等. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(7): 112-120.
XU Yusong, ZHOU Jie, GAN Jiayi, et al. Preparation of phosphorus and nitrogen containing waterborne polyurethane and its application in polyester fabrics for flame retardant finishing[J]. Journal of Textile Research, 2024, 45(7): 112-120.
[23] PAUL R, SOLANS C, ERRA P. Mechanism involved in the dyeing of wool with an oil-in-water microemulsion system[J]. Journal of Applied Polymer Science, 2008, 110(1): 156-162.
[24] NAZARI A, MIRJALILI M, NASIRIZADEH N, et al. Optimization of nano TiO2 pretreatment on free acid dyeing of wool using central composite design[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1068-1076.
[25] XU J, NIU Y, XIE Z, et al. Synergistic flame retardant effect of carbon nanohorns and ammonium polyphosphate as a novel flame retardant system for cotton fabrics[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2022.138566.
[1] 解晓康, 江华, 王也, 石璐璐. α-(三氟甲基)苯基重氮酯型染料与合成纤维的反应机制[J]. 纺织学报, 2025, 46(02): 145-152.
[2] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[3] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[4] 李鑫, 叶培培, 赵晓曼, 王鸿博, 杨国荣, 洪剑寒. 氧化铋-硅橡胶基X射线防护织物的制备及性能[J]. 纺织学报, 2025, 46(02): 227-235.
[5] 魏一, 徐红, 钟毅, 张琳萍, 毛志平. 聚(环三磷腈-间苯三酚)微球的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2025, 46(01): 119-129.
[6] 肖鑫, 李伟, 卢润, 姜会钰, 李青. 等离子体协同过氧化氢活化体系对纯棉水刺非织造布的练漂处理[J]. 纺织学报, 2024, 45(12): 118-127.
[7] 黄田田, 宋媛珠, 赵斌. 单宁酸基阻燃多功能涂层及表面整理Lyocell织物[J]. 纺织学报, 2024, 45(12): 152-158.
[8] 关玉, 王冬, 郭一凡, 付少海. MoS2/MXene阻燃气敏棉织物的制备及其性能[J]. 纺织学报, 2024, 45(12): 159-165.
[9] 杜蕾, 王士杰, 蒋之铭, 朱平. 无卤无磷阻燃聚酰胺超细纤维合成革的制备及其性能[J]. 纺织学报, 2024, 45(11): 162-169.
[10] 邴琳涵, 王锐, 吴雨航, 刘博同, 黄寒江, 魏建斐. 聚对苯二甲酸乙二醇酯基碳点热解法制备及其在阻燃改性中的应用[J]. 纺织学报, 2024, 45(10): 1-8.
[11] 韩画宇, 杨文龙, 王甫, 胡柳, 胡毅. 苯并[a]吩恶嗪基功能染料制备及其在改性涤纶织物上的应用[J]. 纺织学报, 2024, 45(10): 128-136.
[12] 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120.
[13] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[14] 史芷丞, 张玉, 于鸿, 马桂玲, 陈凤翔, 徐卫林. 仿生结构生色技术及其在纺织领域应用的研究进展[J]. 纺织学报, 2024, 45(08): 241-249.
[15] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
Viewed
Full text
17
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 5 0 0 12

  From Others local
  Times 7 10
  Rate 41% 59%

Abstract
51
Just accepted Online first Issue
0 0 51
  From Others local
  Times 39 12
  Rate 76% 24%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!