纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 153-160.doi: 10.13475/j.fzxb.20240906101

• 染整工程 • 上一篇    下一篇

基于液相剥离石墨烯的可见-近红外光隐身锦纶织物

赵登, 张燚, 郑梦杰, 毕曙光(), 冉建华   

  1. 武汉纺织大学 纺织新材料与先进加工技术全国重点实验室, 湖北 武汉 430200
  • 收稿日期:2024-09-25 修回日期:2024-11-11 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 毕曙光(1978—),女,特聘教授,博士。主要研究方向为智能纤维与纺织品。E-mail:sgbi@wtu.edu.cn
  • 作者简介:赵登(2001—),男,硕士生。主要研究方向为功能纺织品。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    国家自然科学基金青年科学基金项目(62101391);能源转化与存储材料化学教育部重点实验室(华中科技大学)开放基金项目(2023JYBKF05)

Vision-near-infrared light stealth nylon fabric based on liquid phase stripping graphene

ZHAO Deng, ZHANG Yi, ZHENG Mengjie, BI Shuguang(), RAN Jianhua   

  1. State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2024-09-25 Revised:2024-11-11 Published:2025-02-15 Online:2025-03-04

摘要:

为赋予锦纶织物近红外光隐身功能,在十二烷基苯磺酸钠(SDBS)的辅助下,以纤维素纳米晶须(CeNW)作为分散剂,液相剥离石墨粉制备稳定的石墨烯水分散液(SCG),协同酸性染料上染锦纶织物。对所制备织物热稳定性、Zeta电位、电导率、微观形貌、反射率、颜色特征及色牢度进行了表征。结果表明:当SDBS质量浓度为0.5 mg/mL,且石墨粉与CeNW质量比为1∶2时,SCG分散性最佳,石墨烯质量分数达18.5%;上染后的锦纶织物在可见光范围内K/S值高,显示了良好的染色效果;近红外光范围内的反射率从33%降到29%,实现了锦纶织物的近红外光隐身功能。

关键词: 近红外隐身, 纤维素纳米晶须, 石墨烯, 酸性染料, 锦纶织物

Abstract:

Objective The requirements for infrared camouflage in modern warfare are becoming increasingly complex and challenging. In order to provide effective camouflage in the visible and infrared spectral ranges, it is necessary to develop suitable infrared camouflage equipment, of which the most effective method is to develop infrared camouflage materials. Near-infrared camouflage textile materials are usually combined with visible light camouflage in the form of camou-flage fabrics.

Method In this research, acid dyes and cellulose nanowhisker liquid-phase stripped graphene were used to syn-ergistically top-dye nylon fabrics to achieve the stealth effect of the fabrics in the visible/near-infrared light bands, aiming to effectively reduces the risk of being detected by the reconnaissance system, and to significantly improve the covertness and survivability of military equipment.

Results A stable graphene aqueous dispersion (SDBS-CeNW-Graphene, abbreviated as SCG) was prepared by liquid-phase exfoliation of graphene with CeNW as the dispersant with the assistance of the small-molecule surfactant SDBS, which showed remarkable dispersion stability in aqueous solution, and there was no obvious precipitation within three months of standing. When the concentration of SDBS reached 0.5 mg/mL, the surface tension of SCG dispersion did not decrease significantly, and the concentration of SCG was close to the critical micelle concentration CMC, when the surface tension reached the minimum. The dispersion effect of SCG dispersions was best when the ratio of graphene to CeNW was 1∶2. Using SCG dispersion to synergize with acid dyes for dyeing nylon fabrics showed high K/S values in the visible light range, which proved the excellent dyeing effect; while in the near-infrared light range, the reflectivity decreased from 33% to 29%, successfully achieving the near-infrared light stealth function of nylon fabrics.

Conclusion In this study, the feasibility of near-infrared light stealth nylon fabrics prepared by liquid-phase exfoliation of graphene from cellulose nano whiskers was experimentally evaluated, and the SCG dispersion obtained by liquid-phase exfoliation of graphene from cellulose nanowhisker was used to synergise with acid-dyeing to dye nylon fabrics that can modulate the reflectivity, which is expected to be in line with the surrounding environment to achieve the light stealth function. The breathability of non-spectral fabrics is better than that of spectral fabrics, but the subsequent fabric materials need to be developed in the direction of ready-to-wear clothing, and their taking performance needs to be considered, and it is necessary to think about how to improve their breathability. Attempts could be made to optimise the preparation of cellulose nanowhisker for liquid phase exfoliation of graphene to obtain a higher purity and dispersion of the material. This will help to improve the uniformity and adhesion of the coating on the fabric, thus improving the stealth effect.

Key words: near-infrared stealth stealth, cellulose nanowhisker, graphene, acid dye, polyamide fabric

中图分类号: 

  • TS190

图1

纤维素纳米晶须剥离石墨烯(SCG)的制备流程图"

表1

SCG分散液配比表"

石墨粉质
量/mg
CeNW质量/
mg
去离子水
体积/mL
石墨粉与
CeNN质量比
480 80 80 6∶1
480 160 80 6∶2
480 240 80 6∶3
480 320 80 6∶4
480 480 80 6∶6
480 720 80 6∶9
480 960 80 6∶12
480 1 440 80 6∶18

图2

SCG分散机制示意图"

图3

石墨粉与CeNW剥离石墨烯(SCG)的水溶液分散图"

图4

SCG分散液加入不同质量浓度SDBS的表面张力"

图5

不同比例的SCG干膜的电导率"

图6

SCG及其组分的热失重曲线"

图7

SCG分散液微观形貌分析图"

图8

织物的K/S值"

表2

织物颜色特征"

织物 L* a* b* C* h* K/S(λmax)值
锦纶6原布 96.35 -0.87 2.96 3.09 106.37 0.015 3
无光谱织物 42.37 3.45 7.29 8.07 64.65 3.583 8
有光谱织物 31.38 2.59 4.47 5.17 59.94 7.325 4

图9

织物紫外线-可见光-红外线反射率曲线图"

图10

织物的透气性"

[1] ZHOU Y, RATHER L J, YU K, et al. Research progress and recent advances in development and applications of infrared stealth materials: a comprehensive review[J]. Laser & Photonics Reviews, 2024. DOI: 10.1002/lpor.202400530.
[2] MAKKI I, YOUNES R, FRANCIS C, et al. A survey of landmine detection using hyperspectral imaging[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124:40-53.
[3] ZHANG Z, WANG Q, LI Z, et al. A skin-beyond multifrequency camouflage system with self-adaptive discoloration and radar-infrared stealth[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.152867.
[4] LU Q, LI M, TIAN A, et al. Green plant leaf-inspired smart camouflage fabrics for visible light and near-infrared stealth[J]. Journal of Bionic Engineering, 2022, 19(3):788-798.
[5] XU B, PAN G, FAN X, et al. A novel type of weather resistant jungle camouflage coating based on hydrotalcites with ability to highly accurate simulate water peaks of the NIR spectrum[J]. Surfaces and Interfaces, 2024. DOI: 10.1016/j.surfin.2024.105025.
[6] 张典典, 李敏, 关玉, 等. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(1):142-148.
ZHANG Diandian, LI Min, GUAN Yu, et al. Preparation and performance of disperse dye printed fabrics with characteristics of vegetation-like Vis-NIR reflectance spectrum[J]. Journal of Textile Research, 2023, 44(1):142-148.
[7] WU Y, ZHAO Y, ZHOU M, et al. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels[J]. Nano-Micro Letters, 2022. DOI: 10.1007/s40820-022-00906-5.
[8] CHENG H, PAN Y, WANG X, et al. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and Infrared stealth[J]. Nano-Micro Letters, 2022. DOI: 10.1007/s40820-022-00812-w.
[9] ZHOU M, TAN S, WANG J, et al. "Three-in-One" multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management[J]. Nano-Micro Letters, 2023. DOI: 10.1007/s40820-023-01144-z.
[10] HU J, HU Y, YE Y, et al. Unique applications of carbon materials in infrared stealth: a review[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2022.139147.
[11] LI L, SHI M, LIU X, et al. Ultrathin titanium car-bide (MXene) films for high-temperature thermal camou-flage[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202101381.
[12] NGUYEN T T N, CHEN Y H, CHEN Z, et al. Microstructure, near infrared reflectance, and surface temperature of Ti—O coated polyethylene terephthalate fabrics prepared by roll-to-roll high power impulse magnetron sputtering system[J]. Thin Solid Films, 2018, 663:1-8.
[13] TAWIAH B, NARH C, LI M, et al. Polymer-encapsulated colorful Al pigments with high NIR and UV reflectance and their application in textiles[J]. Industrial & Engineering Chemistry Research, 2015, 54(47):11858-11865.
[14] CHAI X, ZHU D, CHEN Q, et al. Tailored composition of low emissivity top layer for lightweight visible light-infrared-radar multiband compatible stealth coating[J]. Advanced Composites and Hybrid Materials, 2022, 5(4):3094-3103.
[15] ZHANG W, ZHUANG Y, ZHANG Q. Preparation and properties of multi-color coatings with ultra-low near-infrared reflectivity[J]. Infrared Physics & Technology, 2024. DOI: 10.1016/j.infrared.2024.105122.
[16] YANG Q H, LU W, YANG Y-G, et al. Free two-dimensional carbon crystal-single-layer graphene[J]. Carbon, 2008. DOI: 10.1016/j.carbon.2008.06.002.
[17] 程献伟, 刘亚文, 关晋平, 等. 生物质植酸改性聚氨酯涂层锦纶6织物的制备及其阻燃性能[J]. 纺织学报, 2024, 45(6):120-126.
CHENG Xianwei, LIU Yawen, GUAN Jinping, et al. Preparation of biomass phytic acid-modified polyure-thane-coated nylon 6 fabrics and their flame retardant properties[J]. Journal of Textile Research, 2024, 45(6):120-126.
[18] MONTES S, CARRASCO P M, RUIZ V, et al. Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene[J]. Composites Science and Technology, 2015. DOI: 10.1002/lpor.202400530.
[19] LI Z, YOUNG R J, BACKES C, et al. Mechanisms of liquid-phase exfoliation for the production of gra-phene[J]. ACS Nano, 2020, 14(9):10976-10985.
[20] MENG Y, ZONG G, SUN Y, et al. Flexible multiple-stimulus-responsive photonic films based on layer-by-layer assembly of cellulose nanocrystals and deep eutectic solvents[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.150713.
[1] 罗巧玲, 付少海, 王冬, 王美慧, 郭亚飞, 郝新敏. 生物基锦纶56弱酸性染料仿绿色植被染色[J]. 纺织学报, 2025, 46(02): 130-137.
[2] 左红梅, 高敏, 阮芳涛, 邹梨花, 徐珍珍. MXene-氧化石墨烯改性碳纤维/聚乳酸复合材料制备及其力学性能[J]. 纺织学报, 2025, 46(01): 9-15.
[3] 刘延波, 高鑫羽, 郝铭, 胡晓东, 杨波. 基于光热改性的复合纤维毡及其在高黏度油吸附中的应用[J]. 纺织学报, 2024, 45(11): 55-64.
[4] 郑小佳. 锦纶织物泡沫印花色浆的制备及其对印花性能的影响[J]. 纺织学报, 2024, 45(11): 145-152.
[5] 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106.
[6] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[7] 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66.
[8] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[9] 管图祥, 吴健, 暴宁钟. 微流控纺丝制备石墨烯纤维基柔性超级电容器的研究进展[J]. 纺织学报, 2023, 44(12): 205-215.
[10] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[11] 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167.
[12] 何铠君, 沈加加, 刘国金. 石墨烯改性蚕丝的制备方法及其应用研究进展[J]. 纺织学报, 2023, 44(09): 223-231.
[13] 辛华, 李阳帆, 罗浩. 复合改性氧化石墨烯接枝水性聚氨酯的制备及其性能[J]. 纺织学报, 2023, 44(08): 133-142.
[14] 李阳, 封严. 石墨烯基新型抗菌材料的研究进展[J]. 纺织学报, 2023, 44(04): 230-237.
[15] 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31.
Viewed
Full text
16
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 6 0 0 10

  From Others local
  Times 9 7
  Rate 56% 44%

Abstract
49
Just accepted Online first Issue
0 0 49
  From Others local
  Times 41 8
  Rate 84% 16%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!