纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 236-243.doi: 10.13475/j.fzxb.20240906201

• 服装工程 • 上一篇    下一篇

基于改进深度学习模型的高精度服装样板自动生成

黄小源1, 侯珏2,3, 杨阳2,3, 刘正3,4()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学 服装学院, 浙江 杭州 310018
    3.丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 310018
    4.浙江理工大学 国际时装技术学院, 浙江 杭州 310018
  • 收稿日期:2024-09-26 修回日期:2024-10-23 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 刘正(1981—),男,教授,博士。主要研究方向为数字化服装技术。E-mail:koala@zstu.edu.cn
  • 作者简介:黄小源(1997—),女,博士生。主要研究方向为数字化服装技术。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    浙江省科技重点研发计划项目(2023C03181);嘉兴市重点研发计划项目(2023BZ10009)

Automatic generation of high-precision garment patterns based on improved deep learning model

HUANG Xiaoyuan1, HOU Jue2,3, YANG Yang2,3, LIU Zheng3,4()   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Inheritance and Digital Technology of Product Design,Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
    4. International Institute of Fashion Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2024-09-26 Revised:2024-10-23 Published:2025-02-15 Online:2025-03-04

摘要:

针对三维服装转换成二维样板过程缺乏考虑服装专业知识,导致样板精度差而无法直接应用的问题,提出一种基于深度学习和专家知识相结合的三维服装高精度样板的自动生成方法。首先,通过添加三次和四次贝塞尔曲线以及直角化约束改进服装样板数据集生成器,生成专业高精度样板和三维服装模型数据集;设置边缘损失改进二维样板生成的深度学习混合框架模型,再结合服装结构设计专家知识对生成样板的边缘细节进行优化;最后采用物理模拟和现实扫描三维服装模型进行实例验证。结果表明:改进后的模型在预测样板形状、样板位置、边数准确率等评价指标上均有显著提高,在测试集上样板形状的均方误差降至1.59 cm,精度符合服装相应部位的公允差范围,且对物理模拟和真实扫描的三维服装样板预测具有较好的吻合度,为专业服装样板自动生成提供了有效途径。

关键词: 三维服装, 样板生成, 专家知识, 深度学习, 服装数字化建模

Abstract:

Objective The generation of garment patterns has long been an important research focus in the field of garment product development and garment CAD. Addressing the issue of poor pattern accuracy due to the lack of consideration of garment-specific knowledge during the conversion of 3-D garments into 2-D patterns, which results in patterns that cannot be directly applied, this paper proposes an automatic method for high-precision 3-D garment pattern generation based on the combination of deep learning and expert knowledge.

Method This paper adopted a deep learning-based approach, improving the model by integrating garment pattern requirements and expert knowledge into the NeuralTailor hybrid framework. As the first step, cubic and quartic Bezier curves, as well as right-angle constraints, were added to enhance the garment pattern dataset generator, producing a professional high-precision pattern and 3-D garment model dataset, solving the previous issue of accurately representing complex curves in garment patterns. Then, an edge length loss function was introduced in the training loss of the NeuralTailor framework. Combined with expert knowledge of garment structural design, a fuzzy mathematical model was used to assess garment fit, adjusting the corresponding pattern arcs and optimizing edge details of the generated patterns. This made the improved model capable of automatically generating more precise patterns that better met industrial application requirements. Finally, physical simulations and real-world scanned 3-D garment models were used for case validation.

Results The improved model was evaluated through comparative experiments. Quantitative analysis of the evaluation metrics for different models showed that the pattern shape error of this model was reduced by 0.69 cm compared to the pre-improvement model, with the pattern shape error being less than 2 cm, which falls within the acceptable bust tolerance range for garment production. Translation and rotation errors were also reduced, and the accuracy of the number of pattern edges increased to 100%, indicating improvements in pattern similarity and the prediction of pattern position information. Validation was performed using the 3-D garments from the dataset, 3-D models simulated with other software, and 3-D models from the real-world scanned public dataset MGN. The experimental results indicate that there were significant discrepancies between the patterns generated by the original NeuralTailor model and the actual garment patterns, such as the neckline and sleeve shapes highlighted by black boxes, large differences in seam length, missing pattern pieces, and the inability to segment the placket for closed garments. The method proposed in this paper was shown to be able to accurately predict the pattern shapes of the 3-D garments in the dataset. Although errors might occur around the placket and the accuracy of dart prediction needs improvement for physically simulated and real scanned garments, the garment patterns exhibited good accuracy, capable of predicting higher-precision patterns with pattern curves.

Conclusion The research reported in this paper improves the deep learning model by incorporating garment drafting standards and expert knowledge, using the enhanced NeuralTailor framework to generate garment patterns, followed by professional optimization based on expert knowledge of garment structure. Experimental results from physical simulations and actual 3-D garment scans demonstrate that this method can predict standardized garment patterns. The improved model provides a new professional pattern generation method for virtual try-on and garment design and manufacturing. In the future, robustness studies should be conducted on fabric properties, body shapes, or posture changes, and more extensive garment structure expert knowledge can be integrated for the generation of specialized patterns.

Key words: 3-D garment, pattern generation, expert knowledge, deep learning, garment digital modeling

中图分类号: 

  • TS941

图1

不同贝塞尔曲线的曲线表示对比"

图2

衣身袖窿的曲线表示"

图3

衣身省道表示"

图4

样板模板变化规则示意图"

图5

T恤样板缝线直角化处理示意图"

图6

基于NeuralTailor的专业化样板自动生成框架"

表1

不同合体度曲线修正规则"

合体
程度
袖山前后凸量 前后冲肩量 前后袖笼底凹量
宽松 1.5~1.6 1.6~1.7 1.0~1.5 1.0~1.5 3.8~4.0 3.8~4.0
较宽松 1.6~1.7 1.7~1.8 1.5~2.0 1.5~1.8 3.4~3.6 3.8
较贴体 1.7~1.8 1.8~1.9 2.0~2.5 1.8~2.0 3.2~3.4 3.4~3.6
贴体 1.8~1.9 1.9~2.0 2.5~3.0 2.0~2.5 3.0~3.2 3.4~3.6

表2

不同NeuralTailor的评估结果"

模型 板片形
状误
差/
cm↓
板片边
缘误
差/
cm↓
旋转误
差/
(°)↓
平移误
差/
cm↓
样板边
数准
确率/
%↑
板片数
准确
率/
%↑
NeuralTailor 2.28 0.05 2.87 97 100
NeuralTailor+
边缘损失
1.59 2.3 0.04 2.57 100 100

图7

样板优化前后对比"

图8

各方法在物理模拟三维服装的定性比较 注:图中(a)的三维服装来源于本文数据集;(b)、(c)的三维服装来源于CLO 3D软件模拟。"

图9

各方法在现实扫描三维服装的定性比较 注:图中三维服装来源于现实扫描数据集MGN。"

[1] PIETRONI N, DUMERY C, FALQUE R, et al. Computational pattern making from 3D garment mo-dels[J]. ACM Transactions on Graphics, 2022, 41(4): 14.
[2] LIU K, ZENG X, BRUNIAUX P, et al. 3D interactive garment pattern-making technology[J]. Computer-Aided Design, 2018, 104: 113-124.
[3] LIU L, XU X, LIN Z, et al. Towards garment sewing pattern reconstruction from a single image[J]. ACM Transactions on Graphics, 2023, 42(6): 1-15.
[4] 刘蓉, 谢红. 基于服装结构特征识别的相似样板匹配技术[J]. 纺织学报, 2023, 44(10): 134-142.
doi: 10.13475/j.fzxb.20220707701
LIU Rong, XIE Hong. Similarity pattern matching technology based on garment structural feature recognition[J]. Journal of Textile Research, 2023, 44(10): 134-142.
doi: 10.13475/j.fzxb.20220707701
[5] 李涛, 杜磊, 黄振华, 等. 服装款式图识别与样板转换技术研究进展[J]. 纺织学报, 2020, 41(8): 145-151.
LIU Tao, DU Lei, HUANG Zhenhua, et al. Review on pattern conversion technology based on garment flat recognition[J]. Journal of Textile Research, 2020, 41(8):145-151.
[6] YANG S, PAN Z, AMERT T, et al. Physics-inspired garment recovery from a single-view image[J]. ACM Transactions on Graphics, 2018, 37(5): 1-14.
[7] JEONG M H, HAN D H, KO H S. Garment capture from a photograph[J]. Computer Animation and Virtual Worlds, 2015, 26(3/4): 291-300.
[8] BANG S, KOROSTELEVA M, LEE S H. Estimating garment patterns from static scan data[C]// Computer Graphics Forum. Oxford, UK: Blackwell Publishing Ltd, 2021: 273-287.
[9] SHAN Y, LIANG J, LIN M C. Gan-based garment generation using sewing pattern images[C]// Computer Vision-ECCV 2020: 16th European Conference. Glasgow, UK: Springer International Publishing, 2020: 225-247.
[10] KOROSTELEVA M, LEE S H. Neuraltailor: Reconstructing sewing pattern structures from 3D point clouds of garments[J]. ACM Transactions on Graphics, 2022, 41(4): 1-16.
[11] LIU K, ZENG X, BRUNIAUX P, et al. 3D interactive garment pattern-making technology[J]. Computer-Aided Design, 2018, 104: 113-124.
[12] CHEN X, ZHOU B, LU F, et al. Garment modeling with a depth camera[J]. ACM Transactions on Graphics, 2015, 34(6): 1-12.
[13] WANG K, GUERRERO P, KIM V G, et al. The shape part slot machine: Contact-based reasoning for generating 3D shapes from parts[C]// European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 610-626.
[14] IGARASHI T, MOSCOVICH T, HUGHES J F. As-rigid-as-possible shape manipulation[J]. ACM transactions on Graphics, 2005, 24(3): 1134-1141.
[15] GOTO C, UMETANI N. Data-driven garment pattern estimation from 3D geometries[C]// Eurographics. Vienna, Austria: Eurographics Association, 2021: 17-20.
[16] CALISKAN A, MUATAFA A, IMRE E, et al. Multi-view consistency loss for improved single-image 3d reconstruction of clothed people[C]// Asian Conference on Computer Vision. Cham: Springer International Publishing, 2020: 71-88.
[17] KOROSTELEVA M, LEE S H. Generating datasets of 3d garments with sewing patterns[C]// Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks. Cambridge: MIT Press, 2021: 1-10.
[18] MATTHEW L, NAUREEN M, JAVIER R, et al. SMPL: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 2015, 34(6):1-16
[19] 张文斌. 服装结构设计[M]. 北京: 中国纺织出版社, 2006: 202 -218.
ZHANG Wenbin. Garment structure design[M]. Beijing: China Textile & Apparel Publisher, 2006: 202-218.
[20] BHATNAGAR B L, TIWARI G, THEOBALT C, et al. Multi-garment net: Learning to dress 3d people from images[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. New York: IEEE Computer Society, 2019: 5420-5430.
[1] 蔡丽玲, 王梅, 邵一兵, 陈炜, 曹华卿, 季晓芬. 基于改进堆叠生成对抗网络的传统汉服智能定制推荐[J]. 纺织学报, 2024, 45(12): 180-188.
[2] 刘燕萍, 郭佩瑶, 吴莹. 面向织物疵点检测的深度学习技术应用研究进展[J]. 纺织学报, 2024, 45(12): 234-242.
[3] 李杨, 张永超, 彭来湖, 胡旭东, 袁嫣红. 基于改进甲壳虫全域搜索算法的机织物疵点检测[J]. 纺织学报, 2024, 45(10): 89-94.
[4] 肖伯祥, 张悦, 胡志远, 赵欲晓, 刘莉. 速度滑冰比赛服个性化样板生成方法[J]. 纺织学报, 2024, 45(09): 146-153.
[5] 陆寅雯, 侯珏, 杨阳, 顾冰菲, 张宏伟, 刘正. 基于姿态嵌入机制和多尺度注意力的单张着装图像视频合成[J]. 纺织学报, 2024, 45(07): 165-172.
[6] 文嘉琪, 李新荣, 冯文倩, 李瀚森. 印花面料的边缘轮廓快速提取方法[J]. 纺织学报, 2024, 45(05): 165-173.
[7] 池盼盼, 梅琛楠, 王焰, 肖红, 钟跃崎. 基于边缘填充的单兵迷彩伪装小目标检测[J]. 纺织学报, 2024, 45(01): 112-119.
[8] 陆伟健, 屠佳佳, 王俊茹, 韩思捷, 史伟民. 基于改进残差网络的空纱筒识别模型[J]. 纺织学报, 2024, 45(01): 194-202.
[9] 杨宏脉, 张效栋, 闫宁, 朱琳琳, 李娜娜. 一种高鲁棒性经编机上断纱在线检测算法[J]. 纺织学报, 2023, 44(05): 139-146.
[10] 顾冰菲, 张健, 徐凯忆, 赵崧灵, 叶凡, 侯珏. 复杂背景下人体轮廓及其参数提取[J]. 纺织学报, 2023, 44(03): 168-175.
[11] 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150.
[12] 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178.
[13] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[14] 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137.
[15] 陈金广, 李雪, 邵景峰, 马丽丽. 改进YOLOv5网络的轻量级服装目标检测方法[J]. 纺织学报, 2022, 43(10): 155-160.
Viewed
Full text
74
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 12 0 0 62

  From Others local
  Times 21 53
  Rate 28% 72%

Abstract
97
Just accepted Online first Issue
0 0 97
  From Others local
  Times 64 34
  Rate 65% 35%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!