纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 207-217.doi: 10.13475/j.fzxb.20240906401

• 染整工程 • 上一篇    下一篇

图案化耐久水性聚氨酯/碳纳米管涂层多功能抗静电复合织物的高效经济制备

张喆1, 王瑞1(), 蔡涛2   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.石狮市中纺学服装及配饰产业研究院, 福建 泉州 362700
  • 收稿日期:2024-09-25 修回日期:2024-11-01 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 王瑞(1960—),男,教授,博士。研究方向为复合材料加工、功能与智能纺织品。E-mail:wangrui@tiangong.edu.cn
  • 作者简介:张喆(1996—),男,博士生。主要研究方向为抗静电纺织品。
    第一联系人:

    说 明:本文入围中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    天津市应用基础与前沿技术研究计划重点项目(15JCZDJC38400)

Efficient and economical preparation of patterned durable waterborne polyurethane/carbon nanotube multifunctional antistatic composite fabrics

ZHANG Zhe1, WANG Rui1(), CAI Tao2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. CTES Research Institute of Apparel and Accessories Industry of Shishi, Quanzhou, Fujian 362700, China
  • Received:2024-09-25 Revised:2024-11-01 Published:2025-02-15 Online:2025-03-04

摘要:

为解决当前合成纤维织物静电严重问题,提出了一种经济高效的多功能抗静电复合织物的制备方法。首先,将碳纳米管分散液添加到水性聚氨酯中制备了抗静电浆料,并采用响应面法以电阻最小为目标优化得到了浆料的最优制备工艺为:增稠剂质量分数0.63%、慢干剂质量分数2.5%、碳纳米管质量分数1.35%,以此工艺制备的涂层织物表面电阻低至4.5×104 Ω。在此基础上,利用丝网印刷工艺设计制备了正方形、三角形和圆形的网格状印刷涂层织物。结果表明,网格状涂层织物的电荷面密度为2.5~2.8 μC/cm2,5 kV外部电压下,峰值电压均在(0.2±0.03) kV,半衰期低至3.5 s,与整体涂层织物的测试结果相差较小,值得注意的是网格状涂层的面积仅为整体织物的50%。同时,经过25次模拟家庭水洗、砂纸摩擦以及pH值在1~14的溶液浸泡测试,复合织物仍具备优异的抗静电性能。该研究拓展了其在光热响应领域的应用,在氙灯模拟太阳光照射下,涂层表面温度高达72.84 ℃,并且具有优异的稳定性。

关键词: 碳纳米管, 丝网印刷, 网格状涂层, 抗静电织物, 光热性能

Abstract:

Objective Synthetic fiber fabrics such as polyester and nylon are prone to severe static electricity issues. A comprehensive review of the current literature on fabric antistatic research and an understanding of commercially available antistatic materials reveals that the most effective method to combat static electricity is to enhance the electrical conductivity of the fibers or fabrics using materials with excellent conductive properties, thereby rapidly eliminating static electricity through leakage. The mainstream preparation techniques involve applying conductive materials to the fiber or fabric surface through methods such as padding, coating, and sputtering. However, these methods are associated with complex operations, high costs, and low material utilization rates. Therefore, this study aims to explore an efficient and cost-effective preparation process for antistatic composite fabrics.

Method The preparation process of antistatic composite fabrics in this research was divided into two parts. In the first part, commercially available carbon nanotubes (CNTs) dispersion and waterborne polyurethane (WPU) were used to prepare antistatic paste through simple stirring and thickening. The process parameters of the paste were then optimized using the response surface methodology. Subsequently, precision screen printing meshes with various mesh structures were designed using AutoCAD software and applied to the fabric surface via simple screen printing, resulting in mesh-printed printed coated fabrics.

Results The optimization of the paste making process using the response surface methodology took into consideration of the amounts of thickener (PTF), slow dryer (TPM), and carbon nanotubes (CNTs) as influencing factors, with the goal of minimizing the resistance of the coated fabric. The optimal preparation condition for the paste was determined to be PTF (0.63%), TPM (2.5%), and CNTs (1.35%). The surface resistivity of the coated fabric prepared with these parameters was as low as 4.5×104 Ω, close to the theoretical value, indicating the practical application value of the response surface methodology. The study designed and prepared square, circular, and triangular mesh-print coated fabrics and evaluated their antistatic performance. The surface resistances of the square, circular, and triangular mesh-print coated fabrics were 2.12×105 Ω, 2.87×105 Ω, and 3.12×105 Ω, respectively. The test results also showed that the electric charge density fell within the range of 2.5-2.8 μC/cm2, and the static half period test was between 3.5-4.2. Comparison with the antistatic test results of the overall coated fabric revealed that the mesh coated fabrics were able to achieve a very similar antistatic level, and the area of the mesh-print coating was only 50% of the entire fabric. The mesh-print coated fabric was subjected to wear performance tests, including simulating 25 home washes, sandpaper abrasion, and immersion in acidic and alkaline solutions with pH value ranged from 1 to 14, and the mesh-print coated fabric demonstrated excellent stability in antistatic performance. The mesh-print coated fabrics were also evaluated for photothermal response. Under the irradiation of a xenon lamp simulating sunlight, the coated surface temperature reached up to 72.5 ℃, showing excellent stability.

Conclusion The antistatic performance of the mesh-print coated fabrics designed and prepared in this study was comparable to that of the commerically coated fabrics, with a 50% reduction in the amount of coating paste used, which reduces production costs and improves material utilization. However, a comprehensive understanding of the mesh-print coated fabrics requires a systematic study to investigate the impact of parameters such as mesh shape design, mesh printing area, and mesh width on antistatic performance to design the optimal mesh coating scheme.

Key words: carbon nanotube, screen printing, mesh coating, antistatic fabric, photothermal property

中图分类号: 

  • TS106.8

图1

制备过程示意图"

表1

响应面试验因素水平和编码"

编码 A
PTF
质量分数/%
B
TPM
质量分数/%
C
CNTs
质量分数/%
-1 0.500 1 1.1
0 0.625 2 1.3
1 0.750 3 1.5

图2

涂层织物的傅里叶红外光谱及表面形貌"

图3

涂层织物电阻的单因素试验结果"

表2

试验设计与结果"

序号 A
PTF质量
分数
B
TPM质量
分数
C
CNTs质量
分数
电阻R/
(105 Ω)
1 -1 -1 0 3.97
2 1 -1 0 3.45
3 -1 1 0 1.83
4 1 1 0 1.65
5 -1 0 -1 3.54
6 1 0 -1 2.64
7 -1 0 1 1.93
8 1 0 1 1.99
9 0 -1 -1 4.86
10 0 1 -1 1.51
11 0 -1 1 1.89
12 0 1 1 0.95
13 0 0 0 0.62
14 0 0 0 0.83
15 0 0 0 0.69
16 0 0 0 0.65
17 0 0 0 0.88

表3

电阻回归方程的方差分析结果"

方差来源 平方和 自由度 方差 F P 显著性
回归模型 26.25 9 2.92 75.09 < 0.000 1 **
A 0.30 1 0.30 7.63 0.028 0 *
B 8.47 1 8.47 217.97 < 0.000 1 **
C 4.19 1 4.19 107.89 < 0.000 1 **
AB 0.029 1 0.029 0.74 0.416 9
AC 0.23 1 0.23 5.93 0.045 1 *
BC 1.45 1 1.45 37.38 0.000 5 **
A2 5.16 1 5.16 132.78 < 0.000 1 **
B2 3.29 1 3.29 84.76 < 0.000 1 **
C2 1.97 1 1.97 50.75 0.000 2 **
残差 0.27 7 0.039
失拟项 0.22 3 0.073 5.57 0.065 3
纯误差 0.053 4 0.013
合计 26.52 16

图4

三因素相互影响的响应面及等高线图"

图5

网格状涂层织物样品图及抗静电性能"

图6

涂层织物的光热性能"

图7

涂层织物的耐酸碱稳定性"

图8

涂层织物的洗涤、摩擦后的电阻测试结果及洗涤前后的涂层的表面形貌"

[1] CHEN S, ZHANG S, GALLUZZI M, et al. Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy[J]. Chemical Engineering Journal, 2019, 358: 634-642.
[2] SAFAEI B, MEMARZADEH A, ASMAEL M, et al. Challenges and advancements in additive manufacturing of nylon and nylon composite materials: a comprehensive analysis of mechanical properties, morphology, and recent progress[J]. Journal of Materials Engineering and Performance, 2024, 33:6261-6305.
[3] KOSINSKI S, RYKOWSKA I, GONSIOR M, et al. Ionic liquids as antistatic additives for polymer composites: a review[J]. Polymer Testing, 2022. DOI:10.1016/j.polymertesting.2022.107649.
[4] LIU Y, LU S, LUO J, et al. Research progress of antistatic-reinforced polymer materials: a review[J]. Polymers for Advanced Technologies, 2023, 34(4): 1393-1404.
[5] 李亮, 刘静芳, 胡泽栋, 等. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报. 2020, 41(9): 102-107.
LI Liang, LIU Jingfang, HU Zedong, et al. Graphene oxide loading on polyester fabrics and antistatic properties[J]. Journal of Textile Research, 2020, 41(9): 102-107.
[6] DE S L, ANIOS E G R D, VERGINIO G E A, et al. Carbon-based materials as antistatic agents for the production of antistatic packaging: a review[J]. Journal of Materials Science-Materials in Electronics, 2021, 32(4): 3929-3947.
[7] 凡力华, 宋伟华, 王潮霞. 紫外光还原氧化石墨烯腈纶织物抗静电性能[J]. 纺织学报, 2019, 40(5): 97-101.
FAN Lihua, SONG Weihua, WANG Chaoxia, et al. Antistatic properties of UV-reduced graphene oxide acrylic fabrics[J]. Journal of Textile Research, 2019, 40(5): 97-101.
[8] WANG Z, WANG D, ZHU Z, et al. Enhanced antistatic properties of polyethylene film/polypropylene-coated non-woven fabrics by compound of hot-melt adhesive and polymer antistatic agent[J]. Journal of Industrial Textiles, 2021, 50(6): 921-938.
[9] EKIM S D, AYDIN F, KAYA G E, et al. Core-shell quantum dot-embedded polymers for antistatic applications[J]. ACS Applied Nano Materials, 2023, 6(24): 22693-22700.
[10] FAN Y, SHEN J, XU H. Synthesis and dilute aqueous solution properties of cationic antistatic surfactant functionalized with hydroxyl and ether groups[J]. Tenside Surfactants Detergents, 2023, 60(1): 64-73.
[11] HUFENUS R, GOONEIE A, SEBASTIAN T, et al. Antistatic fibers for high-visibility workwear: challenges of melt-spinning industrial fibers[J]. Materials, 2020. DOI: 10.3390/ma13112645.
[12] SHI Y, TONG L, CHU J, et al. Hierarchical architecture of MXene/polypyrrole hybrid epoxy coating with superior anticorrosion and antistatic performance for Mg alloy[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2024. DOI:10.1016/j.colsurfa.2024.133359.
[13] MIRMOHSENI A, AZIZI M, DORRAJI M S S. Facile synthesis of copper/ reduced single layer graphene oxide as a multifunctional nanohybrid for simultaneous enhancement of antibacterial and antistatic properties of waterborne polyurethane coating[J]. Progress in Organic Coatings, 2019, 131: 322-332.
[14] MIRMOHSENI A, RASTGAR M, OLAD A. Preparation of PANI-CuZnO ternary nanocomposite and investigation of its effects on polyurethane coatings antibacterial, antistatic, and mechanical properties[J]. Journal of Nanostructure in Chemistry, 2018, 8(4): 473-481.
[15] CHOI H, KIM M S, AHN D, et al. Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre[J]. Scientific Reports, 2019. DOI: 10.1038/s41598-019-42495-1.
[16] MA H, GAO Q, GAO C, et al. Facile synthesis of electroconductive AZO@TiO2 whiskers and their application in textiles[J]. Journal of Nanomaterials, 2016. DOI: 10.1155/2016/5940618.
[17] ZHAO S, ZHENG M, SHEN K. Ultrasound-assisted preparation of highly dispersion sulfonated graphene and its antistatic properties[J]. Journal of The Textile Institute, 2021, 112(1): 30-36.
[18] FAN L, TAN Y, AMESIMEKU J, et al. A novel functional disperse dye doped with graphene oxide for improving antistatic properties of polyester fabric using one-bath dyeing method[J]. Textile Research Journal, 2020, 90(5/6): 655-665.
[19] WANG Z, CHENG X W, GUAN J, et al. UV protection, antistatic and flame-retardant multifunctional coating of polyester/spandex fabric with carbon black nanoparticles[J]. Polymer Degradation and Stability, 2024.DOI:10.1016/j.polymdegradstab.2024.10657.
[20] ZHANG Y, LI T T, SHIU B C, et al. Mass production and effect of polyurethane/graphene coating on the durability and versatile protection of ultralight nylon fabrics[J]. Polymer International, 2021, 70(3): 308-316.
[21] ZALEWSKI M J, MAMINSKI M L, PARZUCHOWSKI P G. Synthesis of polyhydroxyurethanes-experimental verification of the box-behnken optimization model[J]. Polymers, 2022.DOI:10.3390/polym/4214510.
[22] 张淑洁, 伏立松, 王瑞, 等. 管道修复用涤纶-苎麻非织造物/环氧树脂复合材料厚度设计[J]. 复合材料学报, 2019, 36(12): 2805-2814.
ZHANG Shujie, FU Lisong, WANG Rui, et al. Thickness design of polyester-ramie/epoxy nonwoven composite applied on pipeline rehabilitation[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2805-2814.
[23] CHU S, SUN Y, HU X, et al. Flexible puncture-resistant composites for antistabbing applications: silica and silicon carbide nanoparticle-/TPU-coated aramid fabrics[J]. Langmuir, 2023, 39(41): 14638-14651.
doi: 10.1021/acs.langmuir.3c01912 pmid: 37782834
[24] LI T, CHU S, HU X, et al. Silica nanoparticle/TPU coating imparts aramid with puncture resistance and anti-corrosion for personal protection[J]. ACS Applied Nano Materials, 2023, 6(18): 16986-16999.
[1] 张蕊, 叶苏娴, 王建, 邹专勇. 全织物型离电式柔性压力传感器的制备及其性能[J]. 纺织学报, 2025, 46(02): 113-121.
[2] 赵方, 邵光伟, 邵慧奇, 毕思伊, 李明昊, 海文清, 张鑫, 姜子洋, 蒋金华, 陈南梁. 镍/铜/镍-碳纳米管复合纱线的制备及其性能[J]. 纺织学报, 2024, 45(12): 144-151.
[3] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
[4] 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145.
[5] 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146.
[6] 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(04): 151-159.
[7] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[8] 宋功吉, 王煜煜, 王善龙, 王建南, 许建梅. 碳纳米管掺杂高聚物制备人工神经导管的研究进展[J]. 纺织学报, 2023, 44(11): 232-239.
[9] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[10] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[11] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[12] 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40.
[13] 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94.
[14] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[15] 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206.
Viewed
Full text
19
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 8 0 0 11

  From Others local
  Times 12 7
  Rate 63% 37%

Abstract
43
Just accepted Online first Issue
0 0 43
  From Others local
  Times 35 8
  Rate 81% 19%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!