纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 207-217.doi: 10.13475/j.fzxb.20240906401
ZHANG Zhe1, WANG Rui1(), CAI Tao2
摘要:
为解决当前合成纤维织物静电严重问题,提出了一种经济高效的多功能抗静电复合织物的制备方法。首先,将碳纳米管分散液添加到水性聚氨酯中制备了抗静电浆料,并采用响应面法以电阻最小为目标优化得到了浆料的最优制备工艺为:增稠剂质量分数0.63%、慢干剂质量分数2.5%、碳纳米管质量分数1.35%,以此工艺制备的涂层织物表面电阻低至4.5×104 Ω。在此基础上,利用丝网印刷工艺设计制备了正方形、三角形和圆形的网格状印刷涂层织物。结果表明,网格状涂层织物的电荷面密度为2.5~2.8 μC/cm2,5 kV外部电压下,峰值电压均在(0.2±0.03) kV,半衰期低至3.5 s,与整体涂层织物的测试结果相差较小,值得注意的是网格状涂层的面积仅为整体织物的50%。同时,经过25次模拟家庭水洗、砂纸摩擦以及pH值在1~14的溶液浸泡测试,复合织物仍具备优异的抗静电性能。该研究拓展了其在光热响应领域的应用,在氙灯模拟太阳光照射下,涂层表面温度高达72.84 ℃,并且具有优异的稳定性。
中图分类号:
[1] | CHEN S, ZHANG S, GALLUZZI M, et al. Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy[J]. Chemical Engineering Journal, 2019, 358: 634-642. |
[2] | SAFAEI B, MEMARZADEH A, ASMAEL M, et al. Challenges and advancements in additive manufacturing of nylon and nylon composite materials: a comprehensive analysis of mechanical properties, morphology, and recent progress[J]. Journal of Materials Engineering and Performance, 2024, 33:6261-6305. |
[3] | KOSINSKI S, RYKOWSKA I, GONSIOR M, et al. Ionic liquids as antistatic additives for polymer composites: a review[J]. Polymer Testing, 2022. DOI:10.1016/j.polymertesting.2022.107649. |
[4] | LIU Y, LU S, LUO J, et al. Research progress of antistatic-reinforced polymer materials: a review[J]. Polymers for Advanced Technologies, 2023, 34(4): 1393-1404. |
[5] | 李亮, 刘静芳, 胡泽栋, 等. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报. 2020, 41(9): 102-107. |
LI Liang, LIU Jingfang, HU Zedong, et al. Graphene oxide loading on polyester fabrics and antistatic properties[J]. Journal of Textile Research, 2020, 41(9): 102-107. | |
[6] | DE S L, ANIOS E G R D, VERGINIO G E A, et al. Carbon-based materials as antistatic agents for the production of antistatic packaging: a review[J]. Journal of Materials Science-Materials in Electronics, 2021, 32(4): 3929-3947. |
[7] | 凡力华, 宋伟华, 王潮霞. 紫外光还原氧化石墨烯腈纶织物抗静电性能[J]. 纺织学报, 2019, 40(5): 97-101. |
FAN Lihua, SONG Weihua, WANG Chaoxia, et al. Antistatic properties of UV-reduced graphene oxide acrylic fabrics[J]. Journal of Textile Research, 2019, 40(5): 97-101. | |
[8] | WANG Z, WANG D, ZHU Z, et al. Enhanced antistatic properties of polyethylene film/polypropylene-coated non-woven fabrics by compound of hot-melt adhesive and polymer antistatic agent[J]. Journal of Industrial Textiles, 2021, 50(6): 921-938. |
[9] | EKIM S D, AYDIN F, KAYA G E, et al. Core-shell quantum dot-embedded polymers for antistatic applications[J]. ACS Applied Nano Materials, 2023, 6(24): 22693-22700. |
[10] | FAN Y, SHEN J, XU H. Synthesis and dilute aqueous solution properties of cationic antistatic surfactant functionalized with hydroxyl and ether groups[J]. Tenside Surfactants Detergents, 2023, 60(1): 64-73. |
[11] | HUFENUS R, GOONEIE A, SEBASTIAN T, et al. Antistatic fibers for high-visibility workwear: challenges of melt-spinning industrial fibers[J]. Materials, 2020. DOI: 10.3390/ma13112645. |
[12] | SHI Y, TONG L, CHU J, et al. Hierarchical architecture of MXene/polypyrrole hybrid epoxy coating with superior anticorrosion and antistatic performance for Mg alloy[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2024. DOI:10.1016/j.colsurfa.2024.133359. |
[13] | MIRMOHSENI A, AZIZI M, DORRAJI M S S. Facile synthesis of copper/ reduced single layer graphene oxide as a multifunctional nanohybrid for simultaneous enhancement of antibacterial and antistatic properties of waterborne polyurethane coating[J]. Progress in Organic Coatings, 2019, 131: 322-332. |
[14] | MIRMOHSENI A, RASTGAR M, OLAD A. Preparation of PANI-CuZnO ternary nanocomposite and investigation of its effects on polyurethane coatings antibacterial, antistatic, and mechanical properties[J]. Journal of Nanostructure in Chemistry, 2018, 8(4): 473-481. |
[15] | CHOI H, KIM M S, AHN D, et al. Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre[J]. Scientific Reports, 2019. DOI: 10.1038/s41598-019-42495-1. |
[16] | MA H, GAO Q, GAO C, et al. Facile synthesis of electroconductive AZO@TiO2 whiskers and their application in textiles[J]. Journal of Nanomaterials, 2016. DOI: 10.1155/2016/5940618. |
[17] | ZHAO S, ZHENG M, SHEN K. Ultrasound-assisted preparation of highly dispersion sulfonated graphene and its antistatic properties[J]. Journal of The Textile Institute, 2021, 112(1): 30-36. |
[18] | FAN L, TAN Y, AMESIMEKU J, et al. A novel functional disperse dye doped with graphene oxide for improving antistatic properties of polyester fabric using one-bath dyeing method[J]. Textile Research Journal, 2020, 90(5/6): 655-665. |
[19] | WANG Z, CHENG X W, GUAN J, et al. UV protection, antistatic and flame-retardant multifunctional coating of polyester/spandex fabric with carbon black nanoparticles[J]. Polymer Degradation and Stability, 2024.DOI:10.1016/j.polymdegradstab.2024.10657. |
[20] | ZHANG Y, LI T T, SHIU B C, et al. Mass production and effect of polyurethane/graphene coating on the durability and versatile protection of ultralight nylon fabrics[J]. Polymer International, 2021, 70(3): 308-316. |
[21] | ZALEWSKI M J, MAMINSKI M L, PARZUCHOWSKI P G. Synthesis of polyhydroxyurethanes-experimental verification of the box-behnken optimization model[J]. Polymers, 2022.DOI:10.3390/polym/4214510. |
[22] | 张淑洁, 伏立松, 王瑞, 等. 管道修复用涤纶-苎麻非织造物/环氧树脂复合材料厚度设计[J]. 复合材料学报, 2019, 36(12): 2805-2814. |
ZHANG Shujie, FU Lisong, WANG Rui, et al. Thickness design of polyester-ramie/epoxy nonwoven composite applied on pipeline rehabilitation[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2805-2814. | |
[23] |
CHU S, SUN Y, HU X, et al. Flexible puncture-resistant composites for antistabbing applications: silica and silicon carbide nanoparticle-/TPU-coated aramid fabrics[J]. Langmuir, 2023, 39(41): 14638-14651.
doi: 10.1021/acs.langmuir.3c01912 pmid: 37782834 |
[24] | LI T, CHU S, HU X, et al. Silica nanoparticle/TPU coating imparts aramid with puncture resistance and anti-corrosion for personal protection[J]. ACS Applied Nano Materials, 2023, 6(18): 16986-16999. |
[1] | 张蕊, 叶苏娴, 王建, 邹专勇. 全织物型离电式柔性压力传感器的制备及其性能[J]. 纺织学报, 2025, 46(02): 113-121. |
[2] | 赵方, 邵光伟, 邵慧奇, 毕思伊, 李明昊, 海文清, 张鑫, 姜子洋, 蒋金华, 陈南梁. 镍/铜/镍-碳纳米管复合纱线的制备及其性能[J]. 纺织学报, 2024, 45(12): 144-151. |
[3] | 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54. |
[4] | 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145. |
[5] | 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146. |
[6] | 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(04): 151-159. |
[7] | 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128. |
[8] | 宋功吉, 王煜煜, 王善龙, 王建南, 许建梅. 碳纳米管掺杂高聚物制备人工神经导管的研究进展[J]. 纺织学报, 2023, 44(11): 232-239. |
[9] | 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18. |
[10] | 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86. |
[11] | 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212. |
[12] | 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40. |
[13] | 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94. |
[14] | 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35. |
[15] | 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 19
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|