纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 138-144.doi: 10.13475/j.fzxb.20240906501

• 染整工程 • 上一篇    下一篇

基于泡沫法给碱的粘胶织物活性红24无尿素印花

崔芳1, 张鑫卿1,2,3,4,5(), 殷斐1, 李大伟1, 雷苗苗1, 谢志勇1   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
    3.国家先进印染技术创新中心, 山东 泰安 271000
    4.西安市生态染整技术重点实验室, 陕西 西安 710048
    5.武汉纺织大学 生物质纤维与生态染整湖北省重点实验室, 湖北 武汉 430200
  • 收稿日期:2024-09-26 修回日期:2024-10-31 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 张鑫卿(1986—),男,讲师,博士。研究方向为绿色纺织化学与清洁染整技术。E-mail:jeanking5056@163.com
  • 作者简介:崔芳(1998—),女,硕士生。主要研究方向为绿色纺织化学与清洁染整技术。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    国家先进印染技术创新中心科研基金项目(ZJ2021A11);中国纺织工业联合会科技指导性项目(2020020);生物质纤维与生态染整湖北省重点实验室开放基金项目(STRZ2020010)

Urea-free printing on viscose fabrics using Reactive Red 24 by foam fed alkali

CUI Fang1, ZHANG Xinqing1,2,3,4,5(), YIN Fei1, LI Dawei1, LEI Miaomiao1, XIE Zhiyong1   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
    4. Xi'an Key Laboratory of Ecological Dyeing and Finishing Technologies, Xi'an, Shaanxi 710048, China
    5. Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2024-09-26 Revised:2024-10-31 Published:2025-02-15 Online:2025-03-04

摘要:

为降低粘胶织物活性染料印花的水耗、能耗和尿素消耗量,利用泡沫法给湿过程对印制活性染料色浆的粘胶织物施加固色碱剂,研究活性染料泡沫法给碱—湿蒸无尿素印花。探讨了泡沫的耐碱稳定性,研究了汽蒸时间、汽蒸温度和碳酸钠质量浓度对活性红24泡沫法给碱—湿蒸印花粘胶织物表观色深的影响,并分析了综合印花效果。结果表明:含4 g/L十二烷基硫酸钠和12 g/L海藻酸钠的发泡原液在碳酸钠质量浓度为90 g/L、pH值为11.51时,泡沫的初见液时间和破裂半衰期仍分别高达14.30 min和80.67 min,耐碱稳定性良好;质量分数为3%的活性红24对粘胶织物进行泡沫法给碱—湿蒸印花的适宜固色条件为碳酸钠质量浓度30 g/L、于115 ℃汽蒸13 min;泡沫法给碱—湿蒸印花织物的花型轮廓清晰度较好、无明显渗化现象,颜色递深性良好,图案颜色均匀性有待提高,耐干、湿摩擦色牢度分别达4~5级和4级及以上。

关键词: 无尿素印花, 活性染料, 粘胶织物, 泡沫稳定性, 泡沫法给碱, 湿蒸固色

Abstract:

Objective Fabrics made of viscose fibers are very popular because of their good hygroscopicity and breathability, as well as wearing comfort. However, the conventional printing on viscose fabrics with reactive dyes is both water and energy intensive. In addition, huge amount of urea is consumed to absorb moisture from the steam, assisting the dissolution of dyes and swelling of fibers, which is not environmentally friendly. In order to reduce the water, energy and urea consumptions in printing viscose fabrics with reactive dyes, a urea-free printing process based on the foam-assisted alkali feeding and wet steaming procedures is proposed.

Method In this study, the alkali agent was applied onto a viscose fabric printed with reactive dyes by pre-wetting with foam, and the moisture absorption function of urea was replaced by utilizing the steam condensation to produce water on the viscose fabric with low wet pick-up during steaming. The alkali-resistant stability of foam prepared by using sodium dodecyl sulfate (SDS) as the foaming agent and sodium alginate (SA) as the foam stabilizer was investigated. The influence of different factors on the color strength of viscose fabric printed with Reactive Red 24 was studied, and the comprehensive printing effects were also analyzed.

Results The drop emergence time (DET, t0) and half-life period of decay (HPD, t1/2) of the foam prepared with 4 g/L of SDS and 12 g/L of SA can reach 14.30 min and 80.67 min respectively, even when the mass concentration of sodium carbonate in the foaming stock solution was 90 g/L with a pH value of 11.51, indicating a good alkali-resistant stability. When the viscose fabrics printed with 3% (mass fraction) of Reactive Red 24 were screen printed with foam prepared with the foaming stock solution containing 4 g/L of SDS, 12 g/L of SA and 30 g/L of sodium carbonate, and then directly steamed at different temperatures for certain time without intermediate drying, the prints can obtain highest K/S value when steamed at 115 ℃ for 13 min. For the viscose fabrics printed with 3% (mass fraction) of Reactive Red 24, screen printed with foam prepared with foaming stock solution containing 4 g/L of SDS, 12 g/L of SA and 10-70 g/L of sodium carbonate, and then steamed at 115 ℃ for 13 min, the K/S value of the prints reached the highest when the concentration of sodium carbonate was 30 g/L. For the registration pattern on viscose fabrics printed with both 3% (mass fraction) of Reactive Blue 19 and Reactive Red 24 in sequence, followed by screen printing with foam prepared with foaming stock solution containing 4 g/L of SDS, 12 g/L of SA and 30 g/L of sodium carbonate, and then steamed at 115 ℃ for 13 min, the outline of the pattern was found clear and smooth, and no obvious bleeding was observed, indicating acceptable pattern sharpness. For the viscose fabrics printed with 1%, 3% and 5% (mass fraction) of Reactive Red 24 using the proposed foam-assisted alkali feeding-wet steaming procedure and the conventional all-in method, the color build-up property was good for both of them, the color levelness of the prints obtained from the proposed printing process was a bit poorer than that from the all-in method, the color fastness to dry rubbing of the prints both reached grade 4-5 or above, and the wet rubbing fastness of the prints obtained from the proposed process was a bit better than that from the all-in method, with a grade of 4 or above for the former.

Conclusion The foaming stock solution formulated with SDS as foaming agent and SA as foam stabilizer has good alkali-resistant stability, with DET and HPD of 14.30 min and 80.67 min, respectively, even when the mass concentration of sodium carbonate was 90 g/L and the pH of 11.51, with 4 g/L of SDS and 12 g/L of SA in the solution. The appropriate conditions for printing viscose fabric with 3% (mass fraction) of Reactive Red 24 using the foam-assisted alkali feeding-wet steaming process are 30 g/L of sodium carbonate, steaming at 115 ℃ for 13 min. The printed viscose fabrics using the developed process have acceptable pattern sharpness with no obvious bleeding, good color build-up property, the color fastness to dry and wet rubbing can respectively reach up to grade 4-5 or above as well as grade 4 or above. In general, although attempts are needed to improve the color levelness, the proposed printing process has the potential to reduce the water, energy and urea consumption in printing of viscose fabric with reactive dyes.

Key words: urea-free printing, reactive dye, viscose fabric, foam stability, feeding alkali with foam system, wet-steaming fixation

中图分类号: 

  • TS194.4

图1

活性蓝19和活性红24的分子结构式"

图2

碳酸钠质量浓度对泡沫t0和t1/2的影响"

图3

汽蒸时间对印花粘胶织物K/S值的影响"

图4

汽蒸温度对印花粘胶织物K/S值的影响"

图5

碳酸钠质量浓度对印花粘胶织物K/S值的影响"

图6

粘胶织物上的对花图案"

图7

活性红24印花粘胶织物的颜色递深性"

表1

不同工艺印花粘胶织物的图案颜色均匀性和耐摩擦色牢度"

印花工艺 染料质量
分数/%
标准
耐摩擦色牢度/级
湿
泡沫法给
碱—湿蒸
工艺
1 0.30 5 4~5
3 0.40 5 4
5 0.94 4~5 4
常规一相
法工艺
1 0.13 5 4~5
3 0.25 5 4
5 0.73 4~5 3~4
[1] 朱维维, 舒伟, 顾文娟. 负载不同极性药物对粘胶织物结构和性能的影响[J]. 纺织学报, 2024, 45(4): 136-141.
ZHU Weiwei, SHU Wei, GU Wenjuan. Effects of loading different polar drugs on structure and properties of viscose fabrics[J]. Journal of Textile Research, 2024, 45(4):136-141.
[2] 朱维维, 管丽媛, 龙家杰. 超临界CO2流体温度对粘胶织物结构和性能的影响[J]. 高分子材料科学与工程, 2023, 39(2): 66-70.
ZHU Weiwei, GUAN Liyuan, LONG Jiajie. Effect of supercritical CO2 temperature on structure and properties of viscose fabric[J]. Polymer Materials Science & Engineering, 2023, 39(2):66-70.
[3] 陈立秋. 少尿素无盐印染[J]. 染整技术, 2008, 30(4): 54-55.
CHEN Liqiu. Low urea and salt-free printing & dyeing[J]. Textile Dyeing and Finishing Journal, 2008, 30(4):54-55.
[4] XIAN Y, WANG H, WU M, et al. Urea-free reactive printing of viscose fabric with high color performance for cleaner production[J]. Cellulose, 2021, 28(4): 2567-2579.
[5] AHMED N S E, YOUSSEF Y A, EL-SHISHTAWY R M, et al. Urea/alkali-free printing of cotton with reactive dyes[J]. Coloration Technology, 2006, 122(6): 324-328.
[6] MIN J, DING M, HE J. Using an N-vinylpyrrolidone co-polymer in reactive dye printing as an alternative to urea[J]. Textile Research Journal, 2021, 91(15/16): 1786-1794.
[7] 丁春燕, 汪澜, 方浩雁, 等. 真丝绸低尿素活性染料印花技术研究[J]. 丝绸, 2010(12): 7-10.
DING Chunyan, WANG Lan, FANG Haoyan, et al. Study on printing process of silk with reactive dyes and few urea[J]. Journal of Silk, 2010(12): 7-10.
[8] 周镭, 樊柳川, 田鹏, 等. 活性染料低尿素印花关键技术探讨[J]. 针织工业, 2020(12): 50-54.
ZHOU Lei, FAN Liuchuan, TIAN Peng, et al. Low urea printing technology of reactive dyes[J]. Knitting Industries, 2020(12):50-54.
[9] 崔芳, 张鑫卿, 王梦楠, 等. 活性深蓝B-2GLN的泡沫法给碱-湿蒸无尿素印花[J]. 印染, 2024, 50(4): 28-32.
CUI Fang, ZHANG Xinqing, WANG Mengnan, et al. Urea-free printing of reactive dark blue B-2GLN by feeding alkali in foam form accompanied with wet-steaming procedure[J]. China Dyeing & Finishing, 2024, 50(4):28-32.
[10] 张鑫卿, 张健飞, 房宽峻, 等. 应用活性蓝19的棉织物低含水率-湿蒸染色工艺[J]. 纺织学报, 2017, 38(2): 129-133.
ZHANG Xinqing, ZHANG Jianfei, FANG Kuanjun, et al. Wet-steaming fixation of cotton fabric padded with Reactive Blue 19 in a low water content state[J]. Journal of Textile Research, 2017, 38(2): 129-133.
[11] AY C, SOPACI S B, ATAKOL O, et al. Adsorption behavior of Reactive Red 24 and methylene blue onto Brewer's spent grain: characterization, kinetics, and isotherms modeling[J]. International Journal of Environmental Analytical Chemistry, 2023. DOI: 10.1080/03067319.2023.2240718.
[12] 谭思思, 余弘, 王元丰, 等. 活性染料泡沫染色液的起泡性及稳定性[J]. 纺织学报, 2013, 34(11): 71-76.
TAN Sisi, YU Hong, WANG Yuanfeng, et al. Foaming properties and foam stability of reactive dye foam sys-tem[J]. Journal of Textile Research, 2013, 34(11):71-76.
[13] XIE K, CHENG F, ZHAO W, et al. Micelle dyeing with low liquor ratio for reactive dyes using dialkyl maleic acid ester surfactants[J]. Journal of Cleaner Production, 2011, 19(4): 332-336.
[14] CHEN S, WANG C, FEI L, et al. A novel strategy for realising environmentally friendly pigment foam dyeing using polyoxyethylene ether surfactant C14EO5 as a foam controller[J]. Coloration Technology, 2017, 133(3): 253-261.
[15] ZHANG N, TIAN Z S, YU Y Y, et al. Enzymatic synthesis of sodium alginate-g-poly(acrylic acid) grafting copolymers as a novel printing thickener[J]. Coloration Technology, 2022, 138(3): 278-290.
[16] 李跃革, 李宁, 贾信. 粘胶织物活性印花中的注意事项[J]. 印染, 2009, 35(4): 33-34.
LI Yuege, LI Ning, JIA Xin. Notes in reactive printing of viscose fabric[J]. China Dyeing & Finishing, 2009, 35(4):33-34.
[17] MATSUI M, MEYER U, ZOLLINGER H. Dye-fibre bond stabilities of dyeings of bifunctional reactive dyes containing a monochlorotriazine and a β-hydroxyethylsulphone sulphuric acid ester group[J]. Journal of the Society of Dyers and Colourists, 1988, 104(11): 425-431.
[18] ABRAHAM L. A green nucleophilic aromatic substitution reaction[J]. Journal of Chemical Education, 2020, 97(10): 3810-3815.
[19] 邵敏, 王丽君, 李美琪, 等. 非水介质-微水体系中活性染料的水解和键合性能[J]. 纺织学报, 2022, 43(11): 94-103.
doi: 10.13475/j.fzxb.20220812110
SHAO Min, WANG Lijun, LI Meiqi, et al. Hydrolysis and bonding properties of reactive dyes in non-aqueous medium with minimal water systems[J]. Journal of Textile Research, 2022, 43(11): 94-103.
doi: 10.13475/j.fzxb.20220812110
[20] LEWIS D M, VO L T T. Dyeing cotton with reactive dyes under neutral conditions[J]. Coloration Technology, 2007, 123(5): 306-311.
[1] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[2] 李万新, 舒大武, 安芳芳, 韩博, 任支刚, 单巨川. 碳化钛与三价铁离子协同过硫酸钠对活性染料废水的降解[J]. 纺织学报, 2025, 46(01): 138-147.
[3] 郑小佳. 锦纶织物泡沫印花色浆的制备及其对印花性能的影响[J]. 纺织学报, 2024, 45(11): 145-152.
[4] 朱维维, 舒伟, 顾文娟. 负载不同极性药物对粘胶织物结构和性能的影响[J]. 纺织学报, 2024, 45(04): 136-141.
[5] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[6] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[7] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[8] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12.
[9] 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131.
[10] 朱维维, 龙家杰, 施楣梧. 粘胶织物中烟酰胺的释放曲线及其模型拟合[J]. 纺织学报, 2023, 44(03): 139-146.
[11] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[12] 张帅, 房宽峻, 刘秀明, 乔曦冉. 活性染料结构对彩色聚合物纳米球性能的影响[J]. 纺织学报, 2022, 43(12): 96-101.
[13] 邵敏, 王丽君, 李美琪, 刘今强, 邵建中. 非水介质-微水体系中活性染料的水解和键合性能[J]. 纺织学报, 2022, 43(11): 94-103.
[14] 乔曦冉, 房宽峻, 刘秀明, 巩继贤, 张帅, 张敏. 羟乙基甲基纤维素改性对棉和锦纶织物表面性质的差异性影响[J]. 纺织学报, 2022, 43(11): 127-132.
[15] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
Viewed
Full text
11
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 5 0 0 6

  From Others local
  Times 5 6
  Rate 45% 55%

Abstract
48
Just accepted Online first Issue
0 0 48
  From Others local
  Times 40 8
  Rate 83% 17%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!