纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 43-50.doi: 10.13475/j.fzxb.20240906701
王恩奇1, 郭萌生1, 胥茹柳1, 陈凤祺1, 樊威1,2, 苗亚萍1()
WANG Enqi1, GUO Mengsheng1, XU Ruliu1, CHEN Fengqi1, FAN Wei1,2, MIAO Yaping1()
摘要:
纤维素是存在于植物细胞壁中的天然高分子化合物,因其独特的生物相容性、可再生性和环境友好性而备受瞩目。为提高纤维素的电学性能,基于密度泛函理论,采用第一性原理计算的方法,探讨了氧原子掺杂对纤维素电学特性的调控规律。结果发现:纤维素是带隙为4.938 eV的绝缘体,当纤维素中的碳原子被氧原子替换后,其电学特性发生了显著的变化;其中,O2原子替换C1或C3后体系带隙明显减小,呈半导体特征,替换原子与周围原子之间的相互作用发生改变,电子局域性增强;O2原子替换C2或C4后体系价带向导带偏移,甚至超过费米能级,表现出半金属特征,而O2原子替换C5后体系仍然表现为绝缘体;当O2原子替换碳的位置时,由于氧原子的电负性较强,易与周围的碳原子形成稳定的共价键,从而限制了电子的跃迁,导致体系的带隙明显减小,导电性增强。
中图分类号:
[1] | 任海伟, 徐志航, 邢雪晔, 等. 纳米纤维素的制备、结构性质及应用研究进展[J]. 食品科学, 2023, 44(17): 215-224. |
REN Haiwei, XU Zhihang, XING Xueye, et al. Research progress on the preparation, structural properties, and applications of nanocellulose[J]. Food Science, 2023, 44(17): 215-224. | |
[2] | SRIVASTAVA D, KUKLIN M S, AHOPELTO J, et al. Electronic band structures of pristine and chemically modified cellulose allomorphs[J]. Carbohydrate Polymers, 2020.DOI: 10.1016/j.carbpol.2020.116440. |
[3] | 周彦, 祁欣, 王梅玲, 等. 纤维素材料分子量测量方法研究进展[J]. 计量科学与技术, 2023, 67(4): 46-56. |
ZHOU Yan, QI Xin, WANG Meiling, et al. Research progress on molecular weight measurement methods of cellulose materials[J]. Metrology Science and Technology, 2023, 67(4): 46-56. | |
[4] | ZHOU S, JIN K, BUEHLER M J. Understanding plant biomass via computational modeling[J]. Advanced Materials, 2020.DOI: 10.1002/adma.202003206. |
[5] | JIANG Kaixiang, YAN Zhe, FANG Wenjuan, et al. Effect of moisture content on the microscopic properties of amorphous cellulose: a molecular dynamics simulations[J]. Materials Research Express, 2022. DOI:10.1088/2053-1591/acaa8c. |
[6] | 王海松, 杜健. 纤维素纸基材料的超疏水改性及其多功能应用[J]. 碳水化合物聚合物, 2023. DOI: 10.1016/j.carbpol.2023.120570. |
WANG Haisong, DU Jian. Superhydrophobic modification of cellulose paper-based materials and their multifunctional applications[J]. Carbohydrate Polymers, 2023. DOI: 10.1016/j.carbpol.2023.120570. | |
[7] | MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemistry Society Review, 2011, 40, 3941-3994. |
[8] | 何江, 王大威. 纤维素材料的改性与研究进展[J]. 复合材料学报, 2022, 39(7): 3121-3130. |
HE Jiang, WANG Dawei. Modification and research progress of cellulose materials[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3121-3130. | |
[9] | GUAN Qingfang, YU Shuhong. Growing bacterial cellulose-based sustainable functional bulk nanocomposites by biosynthe-sis: recent advances and perspectives[J]. Accounts of Materials Research, 2022, 3(6): 608-919. |
[10] | GIERLINGER N, SCHWANNINGER M, REINECKE A, et al. Molecular changes during tensile deformation of single wood fibers followed by raman microscopy[J]. 2006, 7(7): 2077-2081. |
[11] | SETH M, KHAN H, JANA S. Hierarchically structured alphanickel hydroxide based superhydrophobic and antibacterial coating on cellulosic materials for oil-water separation[J]. Materials Chemistry and Physics, 2020. DOI:10.1016/j.matchemphys.2020.123030. |
[12] | SU M, CHEN J, PAN Z, et al. Study on the preparation and mechanical properties of injection-moulded wood-based plastics[J]. Journal of Applied Polymer Science, 2015. DOI:10.1002/app.41376. |
[13] | CIESIELSKI P, CROWLEY M. Nanomechanics of cellulose deformation reveal molecular defects that facilitate natural decon-struction[J]. Proceeding of the National Academy of Sciences of the United States of America, 2019, 116(20): 9825-9830. |
[14] | REN Zechun, GUO Rui, BI Hongjie, et al. Interfacial adhesion of polylactic acid on cellulose surface: a molecular dynamics study[J]. ACS Applied Materials Interfaces, 2020, 12: 3236-3244. |
[15] | ZHAO Siwei, ZHENG Ming, ZOU Xiaohang, et al. Self-assembly of hierarchically structured cellulose@ZnO composite in solid-liquid homogeneous phase: synthesis, DFT calculations, and enhanced antibacterial activities[J]. ACS Sustainable Chemistry Engineering, 2017, 5: 6585-6596. |
[16] | UETSUJI Y, HIGUCHI S, MURAYAMA K, et al. Interfacial adhesion of a grafted polymer on a cellulose surface: a first-principles study[J]. Journal of Materials Science, 2021, 56: 3589-3599. |
[17] | CHOI K H, LEE K S, LEE J H, et al. Hydrophobization of cellulose sheets by gas grafting of palmitoyl chloride by using hot press[J]. Carbohydrate Polymers, 2020.DOI: 10.1016/j.carbpol.2020.116487. |
[18] | SUNNY T, PICKERING K L, LIM S H. Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement[J]. Cellulose, 2020, 27(5): 2569-2582. |
[19] | ZHANG F, LI Y, CAI H, et al. Processing nanocellulose foam into high-performance membranes for harvesting energy from nature[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol.2020.116253. |
[20] | CHEN H P, XIE HA, LI B, et al. A multisite dynamic synergistic oxygen evolution reaction mechanism of Fe-doped NiOOH: a first-principles study[J]. Physical Chemistry Chemical Physics, 2023, 25(48): 32989-32999. |
[21] | TOMOKA Nakamura, TATSUYA Ishiyama. Molecular dynamics study of hydrogen bond structure and tensile strength for hydrated amorphous cellulose[J]. Biomacromolecules, 2024.DOI: 10.1021/acs.biomac.4c00950. |
[22] |
BLOCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50 (24): 17953-17979.
doi: 10.1103/physrevb.50.17953 pmid: 9976227 |
[23] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77 (18): 3865-3868.
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328 |
[24] | AHANGAR R M, FARMANZADEH D. O-doping effects on the adsorption and detection of acetaldehyde and ethylene oxide on phosphorene monolayer: a DFT investigation[J]. Chemical Physics Letters, 2023.DOI: 10.1016/j.cplett.2023.140315. |
[25] | ZHU Bowen, WANG Kexuan, SUN Weisheng, et al. Revealing the adsorption energy and interface characteristic of cellulose-graphene oxide composites by first-principles calculations[J]. Composites Science and Technology, 2022. DOI:10.1016/j.compscitech.2021.109209. |
[1] | 赵登, 张燚, 郑梦杰, 毕曙光, 冉建华. 基于液相剥离石墨烯的可见-近红外光隐身锦纶织物[J]. 纺织学报, 2025, 46(02): 153-160. |
[2] | 杨露, 孟家光, 陈雨青, 支超. 基于废旧纺织品的湿度响应纤维素/聚氨酯复合材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 26-34. |
[3] | 赵方, 邵光伟, 邵慧奇, 毕思伊, 李明昊, 海文清, 张鑫, 姜子洋, 蒋金华, 陈南梁. 镍/铜/镍-碳纳米管复合纱线的制备及其性能[J]. 纺织学报, 2024, 45(12): 144-151. |
[4] | 包新军, 王兴, 张卓, 蒋辛伟, 解开放, 陈情, 何斌, 周衡书. La3+协同催化芦苇基醋酸纤维素的制备及其机制[J]. 纺织学报, 2024, 45(11): 10-20. |
[5] | 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145. |
[6] | 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17. |
[7] | 刘鑫, 王婵, 窦皓, 孟家光, 陈莉, 樊威. 废旧棉/纳米纤维素自增强复合纸的制备与性能[J]. 纺织学报, 2024, 45(06): 39-45. |
[8] | 马凯, 邓璐璐, 王学琳, 石国民, 邹光龙. 棉浆纤维素/质子型离子液体溶液的流变行为[J]. 纺织学报, 2024, 45(05): 10-18. |
[9] | 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112. |
[10] | 时吉磊, 唐春霞, 付少海, 张丽平. 柔韧隔热纤维素基气凝胶制备与性能[J]. 纺织学报, 2024, 45(04): 8-14. |
[11] | 刘懿德, 李凯, 姚久勇, 成芳芳, 夏延致. 纤维素水凝胶纤维的制备及其阻燃传感性能[J]. 纺织学报, 2024, 45(04): 1-7. |
[12] | 韩俊峰, 王云霞, 吴伟, 胡超凡, 封其春, 杜兆芳. 纤维素/茶渣复合薄膜的可控制备及其食品保鲜性能[J]. 纺织学报, 2024, 45(03): 28-35. |
[13] | 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188. |
[14] | 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47. |
[15] | 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 7
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|