纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 43-50.doi: 10.13475/j.fzxb.20240906701

• 纤维材料 • 上一篇    下一篇

氧原子掺杂对纤维素电子态的调控

王恩奇1, 郭萌生1, 胥茹柳1, 陈凤祺1, 樊威1,2, 苗亚萍1()   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
  • 收稿日期:2024-09-26 修回日期:2024-11-04 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 苗亚萍(1988—),女,讲师,博士。主要研究方向为废旧纺织品纤维界面结构及其非共价键调控。E-mail:miaoyaping@xpu.edu.cn
  • 作者简介:王恩奇(2002—),男,硕士生。主要研究方向为废旧纺织品纤维界面结构调控。
  • 基金资助:
    国家自然科学基金青年科学基金项目(52202111);大学生创新创业训练计划创新训练项目(S202310709120)

Regulation of electronic properties of cellulose polymer by oxygen atom doping

WANG Enqi1, GUO Mengsheng1, XU Ruliu1, CHEN Fengqi1, FAN Wei1,2, MIAO Yaping1()   

  1. 1. College of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Materials and Products, Ministry of Education, Xi'an, Shaanxi 710048, China
  • Received:2024-09-26 Revised:2024-11-04 Published:2025-02-15 Online:2025-03-04

摘要:

纤维素是存在于植物细胞壁中的天然高分子化合物,因其独特的生物相容性、可再生性和环境友好性而备受瞩目。为提高纤维素的电学性能,基于密度泛函理论,采用第一性原理计算的方法,探讨了氧原子掺杂对纤维素电学特性的调控规律。结果发现:纤维素是带隙为4.938 eV的绝缘体,当纤维素中的碳原子被氧原子替换后,其电学特性发生了显著的变化;其中,O2原子替换C1或C3后体系带隙明显减小,呈半导体特征,替换原子与周围原子之间的相互作用发生改变,电子局域性增强;O2原子替换C2或C4后体系价带向导带偏移,甚至超过费米能级,表现出半金属特征,而O2原子替换C5后体系仍然表现为绝缘体;当O2原子替换碳的位置时,由于氧原子的电负性较强,易与周围的碳原子形成稳定的共价键,从而限制了电子的跃迁,导致体系的带隙明显减小,导电性增强。

关键词: 纤维素, 第一性原理计算, 氧原子掺杂, 能带, 态密度, 电学性能

Abstract:

Objective Cellulose is a complex macromolecular polysaccharide formed by glucose units connected by β-1,4-glycosidic bonds. It is a natural polymer compound primarily found in plant cell walls, gaining attention for its unique biocompatibility, renewability, and environmental friendliness. The molecular chains of cellulose can intertwine like ropes, forming various structural morphologies. Cellulose has several allomorphic crystalline forms, which lead to diverse physical properties. Generally, at the molecular level, cellulose has various forms of external defects, including disorder in molecular chain arrangement and the presence of voids, cracks, and impurities in its microstructure. On the one hand, the defects would weaken the mechanical properties of celluloses and severely affect the chemical stability and reactivity. On the other hand, the defects in the cellulose such as impurities change the electrical properties. As one example, the doping of oxygen (O) in the cellulose would transform the polymer from an insulator to a semiconductor. However, the basic mechanisms at the electronic scale of the cellulose are still unclear.

Method To deepen the understanding of the changes in electrical characteristics of cellulose after doping, in this work, we investigated the regulation of electrical properties by O doping through the first-principles calculations based on the density functional theory. Calculations were carried out using the Vienna Ab-initio simulation pack-age (VASP). The energy cutoff for the plane wave basis set was set to 450 eV, and the interactions between ionic cores and valence electrons were described using the projector augmented wave (PAW) method. For the exchange-correlation functional, the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional was employed. During structural relaxation, the force convergence criterion was set to less than 0.01 eV/Å, and the total energy convergence criterion was set to less than 1.0 × 10-5 eV.

Results The results indicate that the perfect cellulose has a band gap of 4.938 eV, showing almost no conductivity and exhibiting insulating properties. The conduction band minimum is located to the left of the high-symmetry point D, while the valence band maximum is situated to the right of point D, indicating an indirect band gap. The energy bands are more curved between 5 eV and 8 eV, while they are relatively flat between 0 eV and -8 eV, showing a higher degree of electron localization. When carbon (C) atoms in cellulose were replaced by oxygen (O) atoms, significant changes occurred in its electrical properties. Secondly, when the O2 atom replaced C1 or C3, the band gap of the system decreased significantly, exhibiting semiconductor characteristics. The interaction was changed accordingly between the replaced atom and surrounding atoms, resulting in enhanced electronic localization. The density of states was relatively flat between 0 eV and -10 eV, with a high degree of electronic localization primarily contributed by the p orbitals of O1 and O2. Thirdly, when the O2 atom replaced C2 or C4, the valence band of the system shifted toward the conduction band, even surpassing the Fermi level, displaying half-metallic characteristics. Compared to undoped cellulose, the density of states near the Fermi level changed significantly, primarily contributed by the O2 atom, but with a smaller effect on the conduction band. When the O2 atom replaced C5, the system still behaved as an insulator, the band gap of the system increased and the energy bands remain relatively curved between 5 eV and 6 eV, while being flat between 0 eV and -9 eV, with a high degree of electronic localization.

Conclusion In summary, the replacement of C atom in cellulose with O atom significantly alters its electronic properties due to the higher electronegativity of O, which tends to form stable covalent bonds with surrounding C atoms, thereby limiting electron transitions. However, different substitution sites exhibit distinct properties. Therefore, when preparing and functionally modifying cellulose, the substitution sites of O atom should be given special consideration. By applying doping effects to cellulose, its electrical properties can be significantly altered, offering new insights for the application of cellulose in the engineering field of electronic devices.

Key words: cellulose, first-principle calculation, O doping, band structure, density of state, electrical property

中图分类号: 

  • TS101

图1

纤维素结构模型"

图2

纤维素优化过程"

图3

纤维素的电学特性"

图4

O2替换纤维二糖中C1后体系的电学特性"

图5

O2替换纤维二糖中C2后体系的电学特性"

图6

O2替换纤维二糖中C1后体系的电学特性"

图7

O2替换纤维二糖中C4后体系的电学特性"

图8

O2替换纤维二糖中C5后体系的电学特性"

[1] 任海伟, 徐志航, 邢雪晔, 等. 纳米纤维素的制备、结构性质及应用研究进展[J]. 食品科学, 2023, 44(17): 215-224.
REN Haiwei, XU Zhihang, XING Xueye, et al. Research progress on the preparation, structural properties, and applications of nanocellulose[J]. Food Science, 2023, 44(17): 215-224.
[2] SRIVASTAVA D, KUKLIN M S, AHOPELTO J, et al. Electronic band structures of pristine and chemically modified cellulose allomorphs[J]. Carbohydrate Polymers, 2020.DOI: 10.1016/j.carbpol.2020.116440.
[3] 周彦, 祁欣, 王梅玲, 等. 纤维素材料分子量测量方法研究进展[J]. 计量科学与技术, 2023, 67(4): 46-56.
ZHOU Yan, QI Xin, WANG Meiling, et al. Research progress on molecular weight measurement methods of cellulose materials[J]. Metrology Science and Technology, 2023, 67(4): 46-56.
[4] ZHOU S, JIN K, BUEHLER M J. Understanding plant biomass via computational modeling[J]. Advanced Materials, 2020.DOI: 10.1002/adma.202003206.
[5] JIANG Kaixiang, YAN Zhe, FANG Wenjuan, et al. Effect of moisture content on the microscopic properties of amorphous cellulose: a molecular dynamics simulations[J]. Materials Research Express, 2022. DOI:10.1088/2053-1591/acaa8c.
[6] 王海松, 杜健. 纤维素纸基材料的超疏水改性及其多功能应用[J]. 碳水化合物聚合物, 2023. DOI: 10.1016/j.carbpol.2023.120570.
WANG Haisong, DU Jian. Superhydrophobic modification of cellulose paper-based materials and their multifunctional applications[J]. Carbohydrate Polymers, 2023. DOI: 10.1016/j.carbpol.2023.120570.
[7] MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemistry Society Review, 2011, 40, 3941-3994.
[8] 何江, 王大威. 纤维素材料的改性与研究进展[J]. 复合材料学报, 2022, 39(7): 3121-3130.
HE Jiang, WANG Dawei. Modification and research progress of cellulose materials[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3121-3130.
[9] GUAN Qingfang, YU Shuhong. Growing bacterial cellulose-based sustainable functional bulk nanocomposites by biosynthe-sis: recent advances and perspectives[J]. Accounts of Materials Research, 2022, 3(6): 608-919.
[10] GIERLINGER N, SCHWANNINGER M, REINECKE A, et al. Molecular changes during tensile deformation of single wood fibers followed by raman microscopy[J]. 2006, 7(7): 2077-2081.
[11] SETH M, KHAN H, JANA S. Hierarchically structured alphanickel hydroxide based superhydrophobic and antibacterial coating on cellulosic materials for oil-water separation[J]. Materials Chemistry and Physics, 2020. DOI:10.1016/j.matchemphys.2020.123030.
[12] SU M, CHEN J, PAN Z, et al. Study on the preparation and mechanical properties of injection-moulded wood-based plastics[J]. Journal of Applied Polymer Science, 2015. DOI:10.1002/app.41376.
[13] CIESIELSKI P, CROWLEY M. Nanomechanics of cellulose deformation reveal molecular defects that facilitate natural decon-struction[J]. Proceeding of the National Academy of Sciences of the United States of America, 2019, 116(20): 9825-9830.
[14] REN Zechun, GUO Rui, BI Hongjie, et al. Interfacial adhesion of polylactic acid on cellulose surface: a molecular dynamics study[J]. ACS Applied Materials Interfaces, 2020, 12: 3236-3244.
[15] ZHAO Siwei, ZHENG Ming, ZOU Xiaohang, et al. Self-assembly of hierarchically structured cellulose@ZnO composite in solid-liquid homogeneous phase: synthesis, DFT calculations, and enhanced antibacterial activities[J]. ACS Sustainable Chemistry Engineering, 2017, 5: 6585-6596.
[16] UETSUJI Y, HIGUCHI S, MURAYAMA K, et al. Interfacial adhesion of a grafted polymer on a cellulose surface: a first-principles study[J]. Journal of Materials Science, 2021, 56: 3589-3599.
[17] CHOI K H, LEE K S, LEE J H, et al. Hydrophobization of cellulose sheets by gas grafting of palmitoyl chloride by using hot press[J]. Carbohydrate Polymers, 2020.DOI: 10.1016/j.carbpol.2020.116487.
[18] SUNNY T, PICKERING K L, LIM S H. Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement[J]. Cellulose, 2020, 27(5): 2569-2582.
[19] ZHANG F, LI Y, CAI H, et al. Processing nanocellulose foam into high-performance membranes for harvesting energy from nature[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol.2020.116253.
[20] CHEN H P, XIE HA, LI B, et al. A multisite dynamic synergistic oxygen evolution reaction mechanism of Fe-doped NiOOH: a first-principles study[J]. Physical Chemistry Chemical Physics, 2023, 25(48): 32989-32999.
[21] TOMOKA Nakamura, TATSUYA Ishiyama. Molecular dynamics study of hydrogen bond structure and tensile strength for hydrated amorphous cellulose[J]. Biomacromolecules, 2024.DOI: 10.1021/acs.biomac.4c00950.
[22] BLOCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50 (24): 17953-17979.
doi: 10.1103/physrevb.50.17953 pmid: 9976227
[23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77 (18): 3865-3868.
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
[24] AHANGAR R M, FARMANZADEH D. O-doping effects on the adsorption and detection of acetaldehyde and ethylene oxide on phosphorene monolayer: a DFT investigation[J]. Chemical Physics Letters, 2023.DOI: 10.1016/j.cplett.2023.140315.
[25] ZHU Bowen, WANG Kexuan, SUN Weisheng, et al. Revealing the adsorption energy and interface characteristic of cellulose-graphene oxide composites by first-principles calculations[J]. Composites Science and Technology, 2022. DOI:10.1016/j.compscitech.2021.109209.
[1] 赵登, 张燚, 郑梦杰, 毕曙光, 冉建华. 基于液相剥离石墨烯的可见-近红外光隐身锦纶织物[J]. 纺织学报, 2025, 46(02): 153-160.
[2] 杨露, 孟家光, 陈雨青, 支超. 基于废旧纺织品的湿度响应纤维素/聚氨酯复合材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 26-34.
[3] 赵方, 邵光伟, 邵慧奇, 毕思伊, 李明昊, 海文清, 张鑫, 姜子洋, 蒋金华, 陈南梁. 镍/铜/镍-碳纳米管复合纱线的制备及其性能[J]. 纺织学报, 2024, 45(12): 144-151.
[4] 包新军, 王兴, 张卓, 蒋辛伟, 解开放, 陈情, 何斌, 周衡书. La3+协同催化芦苇基醋酸纤维素的制备及其机制[J]. 纺织学报, 2024, 45(11): 10-20.
[5] 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145.
[6] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[7] 刘鑫, 王婵, 窦皓, 孟家光, 陈莉, 樊威. 废旧棉/纳米纤维素自增强复合纸的制备与性能[J]. 纺织学报, 2024, 45(06): 39-45.
[8] 马凯, 邓璐璐, 王学琳, 石国民, 邹光龙. 棉浆纤维素/质子型离子液体溶液的流变行为[J]. 纺织学报, 2024, 45(05): 10-18.
[9] 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112.
[10] 时吉磊, 唐春霞, 付少海, 张丽平. 柔韧隔热纤维素基气凝胶制备与性能[J]. 纺织学报, 2024, 45(04): 8-14.
[11] 刘懿德, 李凯, 姚久勇, 成芳芳, 夏延致. 纤维素水凝胶纤维的制备及其阻燃传感性能[J]. 纺织学报, 2024, 45(04): 1-7.
[12] 韩俊峰, 王云霞, 吴伟, 胡超凡, 封其春, 杜兆芳. 纤维素/茶渣复合薄膜的可控制备及其食品保鲜性能[J]. 纺织学报, 2024, 45(03): 28-35.
[13] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[14] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[15] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
Viewed
Full text
7
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 4 0 0 3

  From Others local
  Times 4 3
  Rate 57% 43%

Abstract
48
Just accepted Online first Issue
0 0 48
  From Others local
  Times 37 11
  Rate 77% 23%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!