纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 78-85.doi: 10.13475/j.fzxb.20240907501

• 纺织工程 • 上一篇    下一篇

基于自捻纺的嵌入式低扭矩复合纱性能分析

张瑞成1,2, 张文清1,2, 吕哲1,2, 许多2, 刘可帅1,2(), 徐卫林2   

  1. 1.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    2.武汉纺织大学 纺织新材料与先进加工技术全国重点实验室, 湖北 武汉 430200
  • 收稿日期:2024-09-29 修回日期:2024-10-21 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 刘可帅(1989—),男,副教授,博士。主要研究方向为特种功能纺织品。E-mail:liukeshuai89@163.com
  • 作者简介:张瑞成(2000—),男,硕士生。主要研究方向为新型纺纱技术。
    第一联系人:

    说 明:本文入围中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    国家重点研发计划项目(2022YFB3805800);国家自然科学基金项目(U21A2095);国家自然科学基金项目(52203373)

Performance analysis of embedded low-torque composite yarns based on self-twisting spinning

ZHANG Ruicheng1,2, ZHANG Wenqing1,2, LÜ Zhe1,2, XU Duo2, LIU Keshuai1,2(), XU Weilin2   

  1. 1. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2024-09-29 Revised:2024-10-21 Published:2025-02-15 Online:2025-03-04

摘要:

为解决复合纱捻度高、残余扭矩大、扭结较多的问题,采用羊毛纤维、锦纶长丝为原料,结合自捻纺纱与低扭矩纺纱技术,制备了嵌入式同相自捻纱和异相自捻纱,对同相自捻纱进行受力分析,探究了嵌入长丝的角度/间距对复合自捻纱自捻扭矩的影响,分析了长丝与粗纱在不同间距下对2种自捻纱成纱性能的影响。结果表明:嵌入式异相自捻纱性能普遍优于同相自捻纱;随着长丝与粗纱间距增大,长丝包缠角度变大,对短纤维的束缚作用增强,提高了纤维强度利用率和成纱均匀度;当长丝与粗纱间距过大时,长丝对短纤维内外转移的调控作用减弱,纤维间抱合力减小,条干均匀度恶化;在2 mm间距时嵌入式自捻纱综合性能更优,异相自捻纱与同相自捻纱的断裂强度分别为9.79和6.63 cN/tex,条干CV值分别为19.16%和20.93%,3 mm毛羽数量分别为119根/(10 m)和102根/(10 m);嵌入式自捻纱充分利用长丝连续性和受力均匀性平衡退捻力矩,有效降低了复合纱线的残余扭矩(≤1个扭结/(25 cm))。

关键词: 自捻纺, 嵌入式复合纱, 低扭矩, 纱线结构模型, 纱线性能

Abstract:

Objective The yarn quality produced from a single component often faces limitations imposed by the material itself. These limitations can be addressed by utilizing a combination of multiple materials to enhance the performance. Composite yarns are typically manufactured using methods such as ring spinning, which results in high twist rates and substantial residual torque. These factors contribute to an increased number of kinks which necessitates additional processes to reduce residual torque, thereby incurring higher time and resource costs. In contrast, self-twisting spinning leverages the principle of de-twisting during yarn formation, naturally reducing residual torque and offering significant research potential.

Method This study utilized a composite filament approach to investigate the properties of self-twisted yarns, aiming to control the yarn structure and produce low-torque, high-quality composite yarns. Wool fiber and nylon filament served as the raw materials, the improved S300 self-twist spinning system was used for large-scale manufacture of embedded in-phase self-twisted yarns and heterogeneous self-twisted yarns. A stress analysis was conducted on the in-phase self-twisted yarns to examine the influence of the angle and spacing of the embedded filaments on the self-twist torque of the composite yarns. Additionally, the effects of filament and roving spacing on the yarn formation performance of both types of self-twisted yarns were analyzed.

Results Eight groups of spun yarns were rigorously tested using 3-D microscope, evenness tester, hairiness tester, strength tester, and hanging kink test. When the spacing between the filament and the roving was set at 0 mm, the resulting yarns formed a core structure, exhibiting poor quality due to uncontrolled hairiness. At a spacing of 2 mm, the yarns became wrapped yarns, in which the filament exerted inward pressure on the fibers to control the surface fibers and enhance internal strength. This configuration provided optimal strength and evenness properties, validating the effectiveness of the compound twisting followed by retwisting yarn formation scheme. As the spacing between the filament and roving increased, the orientation of the filament was decreased, leading to improvement of the wrapping effect on the fibers and enhancement of the surface hairiness control. However, the filament struggled to maintain internal tensile resistance, resulting in a gradual decline in strength. Furthermore, an increase in the self-twisting torque of the embedded composite self-twisted yarns led to non-uniform twisting distribution, adversely affecting the yarn evenness. When the spacing became excessively large, the filament and roving could not effectively compound under the grip of the twisting roller. On the contrary, they converged at the hook, resulting in a unique yarn formation structure characterized by an initial twist followed by a retwist. In this specific configuration, referred to as Scheme D, both filaments periodically migrated toward the same side. During half a twist cycle, the left filament moved away from the fibers while the right filament remained close, causing the right single yarn to wrap around the yarn body and form a composite single yarn. The left single yarn twisted with the composite yarn, but the filament could not regulate the internal and external transfer of fibers effectively.

Conclusion The embedded self-twisted yarns significantly reduced the residual torque to below one kink in composite yarns. The optimal configuration for achieving superior tensile properties and yarn structure was identified at a filament-roving spacing of 2 mm. In comparison, heterogeneous self-twisted yarns exhibited better evenness and tensile properties than the homogeneous self-twisted yarns. Therefore, the heterogeneous self-twisting spinning method is preferred in practical production. When the spacing between filament and roving exceeded 6 mm, achieving a tensile homophase self-twisted yarns displayed a unique structure with both core and wrapped characteristics, achieving a strength of 7.39 cN/tex, surpassing that of close heterogeneous self-twisted yarns.

Key words: self-twisting spinning, embedded composite yarn, low torque, yarn structure model, yarn property

中图分类号: 

  • TS104.7

表1

30.5 tex嵌入式复合自捻纱制备方案"

方案编号 成纱方案 长丝与粗纱间距/mm
A 复合搓捻-退捻同相自捻纱 0
B 复合搓捻-退捻同相自捻纱 2
C 复合搓捻-退捻同相自捻纱 4
D 独立搓捻-退捻同相自捻纱 6
E 复合搓捻-退捻异相自捻纱 0
F 复合搓捻-退捻异相自捻纱 2
G 复合搓捻-退捻异相自捻纱 4
H 独立搓捻-退捻异相自捻纱 6

图1

不同成纱方案下嵌入式复合自捻纱模型"

图2

自捻纱生产工艺示意图"

图3

嵌入式同相复合自捻纱受力示意图"

图4

嵌入式复合自捻纱的表观形貌照片"

表2

不同嵌入式复合自捻纱的强伸性能"

纱线
编号
断裂强度/
(cN·tex-1)
断裂强度
CV值/%
断裂伸
长率/%
断裂伸长率
CV值/%
YA 6.54 4.39 10.42 12.24
YB 6.63 6.01 9.03 17.81
YC 6.44 7.48 7.63 15.45
YD 7.39 6.14 8.31 14.42
YE 8.89 8.57 11.31 12.55
YF 9.79 7.32 14.82 10.26
YG 7.53 5.05 8.38 13.32
YH 7.38 7.22 7.32 10.12

表3

不同嵌入式复合自捻纱的条干均匀度"

纱线
编号
条干CV
值/%
细节(-50%)/
(个·km-1)
粗节(+50%)/
(个·km-1)
毛结(+200%)/
(个·km-1)
YA 24.61 1 070 480 10
YB 20.93 280 270 20
YC 21.10 260 240 30
YD 22.50 400 220 70
YE 22.36 540 220 10
YF 19.16 150 120 30
YG 20.87 310 240 70
YH 21.63 350 170 30

表4

不同嵌入式复合自捻纱的毛羽数量"

纱线
编号
不同长度的毛羽数量/(根·10 m)-1)
1 mm 2 mm 3 mm 4 mm 5 mm 6 mm 8 mm 10 mm ≥3 mm
YA 1 555 448 173 93 54 37 33 5 394
YB 996 280 102 57 35 17 6 2 220
YC 567 121 47 20 10 9 8 2 96
YD 555 124 43 20 10 5 9 0 86
YE 1 198 314 140 76 48 32 37 4 338
YF 1 122 295 119 55 35 13 3 0 225
YG 701 186 76 26 14 13 8 1 139
YH 577 79 32 18 7 3 5 1 66

图5

嵌入式复合自捻纱的扭结对比"

[1] ERBIL Y, ISLAM R, BABAARSLAN O, et al. Effect of structural changes on the cotton composite yarn properties[J]. Journal of Natural Fibers, 2022, 19(5): 1899-1907.
[2] 贾冰凡, 敖利民, 唐雯, 等. 毛纱/锦纶长丝包覆纱的纺制及其性能与应用[J]. 纺织学报, 2023, 44(12): 58-66.
doi: 10.13475/j.fzxb.20220504601
JIA Bingfan, AO Limin, TANG Wen, et al. Spinning, proper-ties and application of woolen/nylon filament covered yarn[J]. Journal of Textile Research, 2023, 44(12): 58-66.
doi: 10.13475/j.fzxb.20220504601
[3] 胡铖烨, 缪润伍, 韩潇, 等. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(4): 91-97.
HU Chengye, MIAO Runwu, HAN Xiao, et al. Effect of polyvinyl alcohol on the durability of polyaniline conduc-tive layer of aramide composite yarn[J]. Journal of Textile Research, 2019, 41(4): 91-97.
[4] 吕立斌, 杜梅. 涤棉丝Sirofil复合纱的结构与性能[J]. 棉纺织技术, 2009, 37(12): 17-20.
LV Libin, DU Mei. Structure and properties of poly-cotton silk Sirofil composite yarn[J]. Cotton Textile Technology, 2009, 37 (12): 17-20.
[5] 付驰宇, 王灿灿, 何满堂, 等. 接触式简易嵌入纺技术及其苎麻纱性能[J]. 纺织学报, 2019, 40(1): 40-45.
FU Chiyu, WANG Cancan, HE Mantang, et al. Contact simple embedded spinning technology and properties of ramie yarn[J]. Journal of Textile Research, 2019, 40(1): 40-45.
[6] PHILLIPS D G. Torque due to ap-plied tension in ring-spun yarns[J]. Textile Research Journal, 2008, 78(8): 671-681.
[7] 朱明娟, 高亚英, 吴丽莉, 等. Tencel纱线的扭转定形研究[J]. 东华大学学报(自然科学版), 2004(5): 115-119.
ZHU Mingjuan, GAO Yaying, WU Lili, et al. Study on torsion setting of tencel yarn[J]. Journal of Donghua University (Natural Science Edition), 2004 (5): 115-119.
[8] 王玲玲, 杨昆, 蒋跃东. 纱线残余扭矩对纬平针织物线圈歪斜的影响[J]. 针织工业, 2012(11): 22-23.
WANG Lingling, YANG Kun, JIANG Yuedong. Effect of yarn residual torque on coil skew of weft plain knitted fabric[J]. Knitting Industries, 2012(11): 22-23.
[9] 邹专勇, 虞美雅, 陈建勇, 等. 低扭矩环锭柔软纱加工现状与假捻技术的应用[J]. 现代纺织技术, 2018, 26(3): 89-92.
ZOU Zhuanyong, YU Meiya, CHEN Jianyong, et al. Processing status of soft yarn with low torque ring spindle and application of false twist technology[J]. Advanced Textile Technology, 2018, 26(3): 89-92.
[10] TAO X M, LO W K, LAU Y M. Torque-balanced singles knitting yarns spun by unconventional systems:1: cotton rotor spun[J]. Textile Research Journal, 1997, 67(10): 739-746.
[11] 宋伟, 程隆棣. 强捻棉纱蒸纱实践[J]. 纺织科技进展, 2010(1): 52-54.
SONG Wei, CHENG Longdi. Steaming practice of strongly twisted cotton yarn[J]. Progress in Textile Science & Technology, 2010(1): 52-54.
[12] 陈桂亮, 王建坤, 胡艳丽, 等. 纯棉股线定形工艺优选[J]. 棉纺织技术, 2019, 47(1):72-74.
CHEN Guiliang, WANG Jiankun, HU Yanli, et al. Preferred shaping process for cotton stranded yarn[J]. Cotton Textile Technology, 2019, 47(1): 72-74.
[13] 贾伟, 陈南梁, 傅婷. 金属钼丝并线过程中残余扭矩的研究[J]. 产业用纺织品, 2011, 29(6): 22-25.
JIA Wei, CHEN Nanliang, FU Ting. Research on residual torque of molybdenum wire during wire mer-ging[J]. Technical Textiles, 2011, 29 (6): 22-25.
[14] 陶肖明, 郭滢, 冯杰, 等. 低扭矩环锭纺纱原理及其单纱的结构和性能[J]. 纺织学报, 2013, 34(6): 120-125.
TAO Xiaoming, GUO Ying, FENG Jie, et al. Spinning principle of low torque ring spindle and structure and properties of single yarn[J]. Journal of Textile Research, 2013, 34(6): 120-125.
[15] 任纪忠, 贾云辉, 张庆法. 环锭纺加捻三角区对成纱品质的影响探讨[J]. 纺织导报, 2022(5): 67-70.
REN Jizhong, JIA Yunhui, ZHANG Qingfa. Influence of twist triangle on yarn quality in ring spinning[J]. China Textile Leader, 2022(5):67-70.
[16] 崔红, 肖志永, 郁崇文. 自捻纱纺纱速度对自捻捻度的影响[J]. 毛纺科技, 2011, 39(4): 29-32.
CUI Hong, XIAO Zhiyong, YU Chongwen. Effect of spinning speed on twist of self-twist yarn[J]. Wool Textile Journal, 2011, 39(4): 29-32.
[17] 宣金彦. 自捻纺成纱机理研究[D]. 上海: 东华大学, 2014:12-42.
XUAN Jinyan. Research on mechanism of self-twist spinning yarn[D]. Shanghai: Donghua University, 2014:12-42.
[18] 崔红. 自捻纺纱纱线结构及其力学性能研究[D]. 上海: 东华大学, 2012:20-31.
CUI Hong. Research on structure and mechanical properties of self-twist spun yarns[D]. Shanghai: Donghua University, 2012:20-31.
[19] 崔红, 高秀丽, 高大伟, 等. 不同汇合方式自捻纱的捻度分布[J]. 河南工程学院学报(自然科学版), 2016, 28(2): 1-5.
CUI Hong, GAO Xiuli, GAO Dawei, et al. Twist distribution of self-twisted yarn with different confluence methods[J]. Journal of Henan University of Engineering (Natural Science Edition), 2016, 28(2): 1-5.
[20] 北京纺织科学研究所. 自捻纺纱技术知识问答:四[J]. 棉纺织技术, 1977(9): 51-53.
Beijing Textile Research Institute. Questions and answers on self-twist spinning technology: IV[J]. Cotton Textile Technology, 1977(9): 51-53.
[21] 王兟, 张知佑. 自捻捻度与纤维条捻度之间理论关系的论证[J]. 纺织学报, 1987, 8(11): 691-694.
WANG Shen, ZHANG Zhiyou. Demonstration of the theoretical relationship between self-twist twist and fiber twist[J]. Journal of Textile Research, 1987, 8(11): 691-694.
[1] 史晶晶, 杨恩龙. 喂入提前量对棉/羊毛段彩纱结构及性能的影响[J]. 纺织学报, 2024, 45(12): 67-73.
[2] 缪璐璐, 董正梅, 朱繁强, 荣慧, 何林伟, 郑国全, 邹专勇. 芯丝种类与纺纱速度对喷气涡流纺包芯纱性能的影响[J]. 纺织学报, 2023, 44(12): 50-57.
[3] 贾冰凡, 敖利民, 唐雯, 郑元生, 尚珊珊. 毛纱/锦纶长丝包覆纱的纺制及其性能与应用[J]. 纺织学报, 2023, 44(12): 58-66.
[4] 史晶晶, 杨恩龙. 赛络纺棉/毛段彩纱结构及其性能[J]. 纺织学报, 2023, 44(03): 55-59.
[5] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[6] 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33.
[7] 许多, 卫江, 梅剑香, 张心伶, 张又青, 徐卫林, 刘可帅. 柔洁纺粘胶强捻纱及其织物性能[J]. 纺织学报, 2019, 40(10): 48-55.
[8] 张婷婷, 薛元, 徐志武, 于健, 陈连光. 三通道数码纺混色纱色谱体系构建及其彩色纱性能分析[J]. 纺织学报, 2019, 40(09): 48-55.
[9] 付驰宇, 王灿灿, 何满堂, 夏治刚. 接触式简易嵌入纺技术及其苎麻纱性能[J]. 纺织学报, 2019, 40(01): 40-45.
[10] 贺玉东 薛元 杨瑞华 刘曰兴 张国清. 双通道环锭数码纺混色纱的结构及其性能[J]. 纺织学报, 2018, 39(11): 27-32.
[11] 王元峰 冯艳飞 夏治刚 . 复合纱体中长丝分布形态对纱线性能的影响[J]. 纺织学报, 2017, 38(09): 32-39.
[12] 吴娟 谢春萍 徐伯俊 刘新金 苏旭中. 和毛油添加对牦牛绒纤维及成纱质量的影响[J]. 纺织学报, 2015, 36(12): 32-36.
[13] 钟智丽 王玉新. 聚丙烯长丝/芳纶包缠纱捻度的优化[J]. 纺织学报, 2014, 35(6): 40-0.
[14] 陶肖明 郭滢 冯杰 徐宾刚 华涛. 低扭矩环锭纺纱原理及其单纱的结构和性能[J]. 纺织学报, 2013, 34(6): 120-125.
[15] 付江;于伟东. 假捻集聚纺纱方法中基本工艺参数的作用分析[J]. 纺织学报, 2011, 32(5): 38-42.
Viewed
Full text
38
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 21 0 0 17

  From Others local
  Times 12 26
  Rate 32% 68%

Abstract
57
Just accepted Online first Issue
0 0 57
  From Others local
  Times 41 16
  Rate 72% 28%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!