纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 20-25.doi: 10.13475/j.fzxb.20240907701

• 纤维材料 • 上一篇    下一篇

自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能

赵超1, 金欣1,2(), 王闻宇1, 朱正涛1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 材料科学与工程学院, 天津 300387
  • 收稿日期:2024-09-28 修回日期:2024-11-02 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 金欣(1972—),女,教授,博士。主要研究方向为功能性纤维、静电纺丝技术和高聚物材料。E-mail:jinxin@tiangong.edu.cn
  • 作者简介:赵超(1995—),男,博士。研究方向为功能性超级电容器隔膜、压电纳米发电机以及智能穿戴纺织品的应用。
    第一联系人:

    说 明:本文入选中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    国家自然科学基金项目(51573136);国家自然科学基金项目(51103101)

Electrospun polyacrylonitrile separator for self-charging supercapacitors

ZHAO Chao1, JIN Xin1,2(), WANG Wenyu1, ZHU Zhengtao1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2024-09-28 Revised:2024-11-02 Published:2025-02-15 Online:2025-03-04

摘要:

针对自充电体系中压电隔膜亲水性差、电压性低和自充电电池结构坚硬导致能量损失等问题,利用聚丙烯腈(PAN)压电纳米纤维代替传统的聚偏氟乙烯(PVDF)作为超级电容器中的隔膜。通过静电纺丝技术,将极化和拉伸过程的协同作用相结合,从而获得优异的亲水性(接触角0°)、高压电性能(4.4 V)、高力学性能(8.2 MPa)和优异循环稳定性(20 000次循环后保持不变)的自充电超级电容器。研究结果表明,基于PAN压电隔膜的超级电容器在2 mA/cm2的电流密度下具有138 mF/cm2的比电容,5 000次压缩循环后的电容保持率为94.2%。该器件可通过机械运动在无外接电源的情况下为小灯泡等小型家用电器充电。

关键词: 压电隔膜, 静电纺丝, 自充电超级电容器, 聚丙烯腈, 纳米发电机

Abstract:

Objective This study aims to address the poor hydrophilicity, low voltage, and rigid structure of piezoelectric separators in self-charging systems that lead to energy loss. The research focuses on substituting traditional polyvinylidene fluoride (PVDF) with polyacrylonitrile (PAN) piezoelectric nanofiber membranes in self-charging supercapacitor (SCSPC), in order to enhance the piezoelectric and self-charging performance of the devices. This innovation is crucial for advancing flexible and integrated energy storage solutions.

Method The study employed electrospinning technology to produce PAN and PVDF nanofiber membranes. The process involved the polarization and stretching of PAN fibers to achieve excellent hydrophilicity, high piezoelectric performance, and superior mechanical properties. The electrochemical performance of the resulting SCSPC was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) tests, and piezoelectric output measurements. The structural and morphological properties of the fibers were analyzed using scanning electron microscopy (SEM) and dynamic contact angle testing.

Results The PAN nanofibers exhibited significant improvements over PVDF in several aspects. For morphology and mechanical properties, the PAN fiber membrane had a uniform diameter (450 nm), higher porosity (60%), and greater mechanical strength (8.2 MPa) compared to the PVDF counterpart (2.7 MPa). The higher porosity facilitated efficient electrolyte infiltration, and the superior mechanical strength ensured durability under mechanical stress. In terms of hydrophilicity, the PAN membranes demonstrated exceptional hydrophilicity with a contact angle of 0°, compared to the hydrophobic nature of PVDF whose contact angle 121°. This feature would enhance the ionic conductivity within the SCSPC. On piezoelectric performance, the PAN-based devices generated a higher piezoelectric voltage output (4.4 V) and maintained stability over 20 000 cycles, while the PVDF devices showed lower output of 2.9 V and reduced stability after 13 000 cycles. For electrochemical performance, the PAN-based SCSPC exhibited a high specific capacitance of 138 mF/cm2 at a current density of 2 mA/cm2, significantly outperforming the PVDF-based SCSPC whose specific capacitance was 42 mF/cm2. The designed PAN-based devices retained 94.2% of their capacitance after 5 000 compression cycles, compared to 55.1% for the PVDF-based devices uder the same cyclic loading. In terms of self-charging capability, the self-charging voltage of the PAN-based SCSPC reached 132.8 mV under mechanical stress, far exceeding that of the PVDF-based systems (84.6 mV) and traditional piezoelectric nanogenerators with rectifiers (32.3 mV). This demonstrates efficient mechanical-to-electrical energy conversion without additional rectifiers, reducing energy loss.

Conclusion The study highlights the superior performance of the PAN piezoelectric nanofiber membranes over the traditional PVDF membranes in SCSPC. The enhanced hydrophilicity, mechanical strength, piezoelectric output, and electrochemical stability of PAN-based devices demonstrate their potential for flexible, high-performance energy storage applications. The findings suggest that the PAN nanofiber membranes are promising candidates for developing advanced self-charging technologies, overcoming the limitations of conventional materials and paving the way for practical applications in wearable and portable electronics. This research provides a foundational understanding for the future design and implementation of efficient, self-powered energy systems.

Key words: piezoelectric separator, electrospinning, self-charging supercapacitor, polyacrylonitrile, nanogenerator

中图分类号: 

  • TQ340.64

图1

PAN和PVDF纤维的形貌和直径变化"

图2

PAN和PVDF纤维的应力-应变曲线"

图3

PAN和PVDF纤维的接触角直观图"

图4

PAN和PVDF纳米纤维膜的压电性能"

图5

电化学性能测试"

图6

PAN基SCSPC的实际应用场景"

[1] CHAN Candacek, PENG Hailin, LIU Gao, et al. High-performance lithium battery anodes using silicon nanowires[J]. Natue Nanotechnology, 2008, 3(1): 31-35.
[2] HUSKINSON Brian, MARSHARK Michaelp, SUH Changwon, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505: 197-198.
[3] WANG Wenyu, HAN Xing, NIU Jiarong, et al. Direct-current energy generators from polypyrrole-coated fabric/metal schottky diodes with considerably improved output[J]. Journal of Materials Chemistry A, 2020, 8: 24166-24174.
[4] KRISHNAMOORTHY Karthikeyan, PAZHAMALAI Parthiban, MARIAPPAN Vimalkumar, et al. Probing the energy conversion process in piezoelectric-driven electro-chemical self-charging supercapacitor power cell using pie-zoelectrochemical spectroscopy[J]. Nature Communications, 2020. DOI: 1038/s41467-020-15808-6.
[5] CABANA Jordi, MONCONDUIT Laure, LARCHER Dominique, et al. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions[J]. Advanced Materials, 2010, 22(35): 170-192.
[6] ZHAO Chao, NIU Jiarong, XIAO Changfa, et al. Separator with high ionic conductivity and good stability prepared from keratin fibers for supercapacitor applications[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.136537.
[7] WANG He, NIU Haitao, WANG Hongjie, et al. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance[J]. Journal of Power Sources, 2021. DOI: 10.1016/j.jpowsour.2020.228986.
[8] XUE Xinyu, DENG Ping, HE Bin, et al. Flexible self-charging power cell for one-step energy conversion and storage[J]. Advanced Energy Materials, 2014. DOI: 10.1002/aenm.201301329.
[9] KIM Youngsoo, XIE Yannan, WEN Xiaonan, et al. Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell[J]. Nano Energy, 2015, 14: 77-86.
[10] XUE Xinyu, WANG Sihong, GUO Wenxi, et al. Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell[J]. Nano Letters, 2012, 12: 5048-5054.
doi: 10.1021/nl302879t pmid: 22876785
[11] GAO Dan, LIU Ruhao, YU Wei, et al. Gravity-induced self-charging in carbon nanotube/polymer supercapacitors[J]. Journal of Materials Chemistry A, 2019, 123(9): 5249-5254.
[12] RAMADOSS Ananthakumar, SARAVANAKUMAR Balasubramaniam, LEE Seungwoo, et al. Piezoelectric-driven self-charging supercapacitor power cell[J]. Acs Nano, 2015, 9(4): 4337-4345.
doi: 10.1021/acsnano.5b00759 pmid: 25794521
[13] ZHOU Dan, WAMG Fengyi, YANG Jiaqi, et al. Flexible solid-state self-charging supercapacitor based on symmetric electrodes and piezo-electrolyte[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.126825.
[14] WANG Wenyu, ZHENG Yide, JIN Xin, et al. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes[J]. Nano Energy, 2019, 56: 588-594.
doi: 10.1016/j.nanoen.2018.11.082
[15] SONG Ruobing, JIN Huanyu, LI Xing, et al. A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes[J]. Journal of Materials Chemistry A, 2015, 3(29): 14963-14970.
[1] 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19.
[2] 范梦晶, 岳欣琰, 邵剑波, 陈雨, 洪剑寒, 韩潇. 基于静电纺纤维包芯纱的电容式扭转传感器构建及其传感性能[J]. 纺织学报, 2025, 46(02): 106-112.
[3] 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8.
[4] 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51.
[5] 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8.
[6] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[7] 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32.
[8] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[9] 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45.
[10] 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234.
[11] 刘健, 王程皓, 董守骏, 刘泳汝. 半封闭自由表面式静电纺丝喷头设计与优化[J]. 纺织学报, 2024, 45(11): 215-225.
[12] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
[13] 刘健, 董守骏, 王程皓, 刘泳汝, 潘山山, 尹兆松. 花瓣状多尖端静电纺丝喷头的电场模拟及优化[J]. 纺织学报, 2024, 45(10): 191-199.
[14] 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207.
[15] 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32.
Viewed
Full text
41
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 10 0 0 31

  From Others local
  Times 6 35
  Rate 15% 85%

Abstract
76
Just accepted Online first Issue
0 0 76
  From Others local
  Times 47 29
  Rate 62% 38%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!