纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 218-226.doi: 10.13475/j.fzxb.20240908001

• 染整工程 • 上一篇    下一篇

织物基图案化导电矩阵的自组装成形及传感应用

陈琪1, 武萁2, 徐锦琳1, 贾浩1,3()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.北京中视广经文化发展有限公司, 北京 100025
    3.浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
  • 收稿日期:2024-09-25 修回日期:2024-11-06 出版日期:2025-02-15 发布日期:2025-02-15
  • 通讯作者: 贾浩(1990—),男,教授,博士。研究方向为功能性纺织品、智能服装、柔性电子器件。E-mail:jiahao@jiangnan.edu.cn
  • 作者简介:陈琪(2001—),女,硕士生。主要研究方向为织物基传感监测器件。
  • 基金资助:
    浙江省清洁染整技术研究重点实验室开放基金项目(QJRZ2206)

Self-assembly and sensing applications of patterned conductive fabric matrix

CHEN Qi1, WU Qi2, XU Jinlin1, JIA Hao1,3()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Beijing Zhongshiguangjing Cultural Development Co., Ltd., Beijing 100025, China
    3. Zhejiang Key Laboratory of Clean Dyeing and Finishing Technology, Shaoxing, Zhejiang 312000, China
  • Received:2024-09-25 Revised:2024-11-06 Published:2025-02-15 Online:2025-02-15

摘要:

为实现织物基图案化复合纳米材料矩阵的可控成形,采用纳米银复合导电分散液和织物基底相结合,通过低压紫外光照以及化学处理方法,实现织物表面特定线路的表面能差异化,使导电分散液在织物表面定位附着及铺展成形,并对成形的导电矩阵传感性能及服用性能进行测试。结果表明:通过该方法制备的导电矩阵具有良好的分辨率,在1%、5%、10%、15%应变下都能达到稳定循环,能够灵敏地捕捉到弹尺振动、喉结振动、眨眼、手指弯曲等微小振动的信号,在弯折、扭转和摩擦200次后电阻仍能保持稳定,该方法有望制备高灵敏度可穿戴设备实时监测人体运动信号。

关键词: 银纳米线, 表面能差异, 亲疏水性, 自组装, 图案化, 传感器

Abstract:

Objective Flexible sensor devices based on fabrics have shown wide application prospects in fields such as healthcare and human-computer interaction in recent years due to their excellent bendability, good flexibility, and breathability. However, the roughness of the fabric surface makes it difficult to construct high-precision electrode patterns and structures on its surface. Therefore, using low-pressure ultraviolet light and chemical surface treatment methods, a high-precision and high-sensitivity patterned conductive matrix was constructed on the surface of the fabric.

Method By combining nano silver composite conductive dispersion with fabric substrate and using low-pressure ultraviolet light irradiation and chemical treatment methods, the surface energy differentiation of specific parts of the fabric surface is achieved, resulting in differences in hydrophilicity and hydrophobicity. This leads to the positioning, attachment, and spreading of the conductive dispersion on the fabric surface. The positioning, adhesion, and spreading of conductive dispersion on the substrate surface were regulated through microstructure morphology construction and surface chemical structure, thereby achieving specific conductive circuit patterns on non-planar substrates.

Results To improve the sensitivity and stability of conductive dispersion in sensing applications, silver nanowires were prepared using the polyol method, and carbon nanofibers were introduced to prepare a highly sensitive sensing nano silver composite conductive dispersion. Preparation of high aspect ratio silver nanowires by adjusting silver ion concentration and high-temperature reaction time. Through the synergistic effect between silver nanowires and carbon nanofibers, high aspect ratio silver nanowires were used as the conductive skeleton, and brittle carbon nanofibers are introduced as the "weak link". When the base fabric was stretched, the brittle carbon nanofibers would be shifted first, causing a change in resistance and improving the sensitivity of the conductive network. In order to obtain a sensing fabric substrate with higher fineness and adhesion, the mass ratio of long-chain silane to TiO2 was used to regulate the substrate roughness. It was found that when the mass ratio of long-chain silane to TiO2 was 1∶3, the surface roughness of the hydrophobic fabric became higher, which is conducive to the adhesion of the conductive dispersion and reduces the time cost. As the proportion of long-chain silane increases, the depth of the fabric surface increases, resulting in a higher surface roughness of hydrophobic fabrics. Due to the mechanical anchoring effect, increasing surface roughness can enhance the adhesion between the deposited metal pattern and the substrate. Finally, the UV illumination time was set to 30 minutes. UV irradiation was found to be able to break anaerobic bonds, induce substrate oxidation, cause changes in surface structure, and increase surface energy and adhesion. Using a nano silver composite conductive dispersion with a volume ratio of 20% ethylene glycol, it showed good stability and self-assembled circuits with a small fineness of up to 100 μm. After adjusting the solvent composition, the nano silver composite conductive dispersion quickly and accurately adhered to the hydrophilic region of the self-assembled patterned fabrics with good resolution. The conductive matrix prepared by this method achieved stable cyclic performance at strains of 1%, 5%, 10%, and 15%, and sensitively captured signals of small vibrations such as elastic ruler vibration, Adam's apple vibration, blinking, and finger bending. The resistance remained stable after 200 bending, twisting, and friction cycles.

Conclusion This strain sensor has high sensitivity in capturing signals of small vibrations and can monitor and record different degrees of limb movements. As the degree of limb bending increases, it displays varying degrees of changes in electrical resistivity. These results demonstrate the potential of the sensor in monitoring human motion. With the rapid development of artificial intelligence and IoT technology, smart wearable electronic products have attracted more attention. The method used in this research is simple to operate, cost-effective, and can be integrated into various complex patterned conductive lines. In addition to strain sensors, it can also be applied in fields such as fabric thermal management and health textiles, and its application can be expanded to achieve multifunctional development of products.

Key words: silver nanowire, surface energy difference, hydrophilicity/hydrophobicity, self-assembly, patterning, sensor

中图分类号: 

  • TS195.5

图1

织物基图案化导电矩阵的制备流程图"

图2

AgNWs导电分散液和AgNWs/CNF复合导电分散液SEM照片"

图3

纳米银复合导电分散液的流动曲线"

图4

纳米银复合导电分散液的表面张力"

图5

紫外光照前后织物基底表面变化示意图"

图6

疏水织物基底SEM照片"

图7

紫外光照前后织物基底表面红外光谱图"

图8

液滴在织物表面“接触—移动—脱离”的过程"

图9

紫外光照不同时间下织物表面润湿性变化"

图10

纳米银复合导电分散液在紫外光照射前后织物表面瞬时和30 s后接触角"

图11

纳米银复合导电分散液自组装图案化织物光学图"

图12

AgNWs/CNF复合导电分散液自组装导电线路在不同应变下的循环稳定性"

图13

未封装和PDMS封装后的织物基应变传感器在不同条件下的电阻变化"

图14

PDMS封装后的应变传感器展示图"

图15

织物基应变传感器对于不同信号的检测"

[1] 张灏, 周晓帆. 智能可穿戴服饰设计新技术及其应用[J]. 针织工业, 2022(1): 57-60.
ZHANG Hao, ZHOU Xiaofan. New technologies and applications for intelligent wearable clothing design[J]. Knitting Industries, 2022(1): 57-60.
[2] WENG Wei, YANG Junjie, ZHANG Yang, et al. A route toward smart system integration: from fiber design to device construction[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902301.
[3] ZHANG Jiawen, ZHANG Yan, LI Yuanyuan, et al. Textile-based flexible pressure sensors: a review[J]. Polymer Reviews, 2022, 62(1): 65-94.
doi: 10.1080/15583724.2021.1901737
[4] 王瑾, 缪旭红. 基于织物的柔性电路制备方法及应用研究进展[J]. 丝绸, 2021, 58(3): 36-40.
WANG Jin, MIAO Xuhong. Research progress on preparation methods and applications of fabric based flexible circuits[J]. Journal of Silk, 2021, 58 (3): 36-40.
[5] 陈艳艳. RFID天线用多形貌PVP包覆纳米银UV导电油墨的制备及其性能研究[D]. 广州: 华南理工大学, 2017: 31-38.
CHEN Yanyan. Preparation and performance study of polymorphic PVP coated nano silver UV conductive ink for RFID antennas[D]. Guangzhou: South China University of Technology, 2017: 31-38.
[6] GUBBELS F, JEROME R, TEYSSIE P, et al. Selective localization of carbon black in immiscible polymer blend14s: a useful tool to design electrical conductive composites[J]. Macromolecules, 1994, 27(7): 1972-1974.
[7] LI Bo, ZHANG Shenghua, ZHANG Lei, et al. Strain sensing behavior of FDM 3D printed carbon black filled TPU with periodic configurations and flexible sub-strates[J]. Journal of Manufacturing Processes, 2022, 74: 283-295.
doi: 10.1016/j.jmapro.2021.12.020
[8] CIAN Cummins, ROSS Lundy. Enabling future nanomanufacturing through block copolymer self-assembly: a review[J]. Nano Today, 2020. DOI: 10.1016/j.nantod.2020.100936.
[9] LI Huizeng, FANG Wei, ZHAO Zhipeng, et al. Droplet precise self-splitting on patterned adhesive surfaces for simultaneous multidetection[J]. Angewandte Chemie International Edition, 2020, 59(26): 10535-10539.
[10] 张高晶, 王冰心, 刘迎春, 等. 三维织物基石墨烯柔性压力传感器设计及应用[J]. 针织工业, 2021(4): 49-54.
ZHANG Gaojing, WANG Bingxin, LIU Yingchun, et al. Design and application of a flexible pressure sensor for 3D fabric cornerstone graphene[J]. Knitting Industries, 2021(4): 49-54.
[11] LI Zhundong, HU Fengming, CHEN Zhiming, et al. Fiber-junction design for directional bending sen-sors[J]. Npj Flexible Electronics, 2021, 5(1): 4.
[12] MATHIEU Delmas, MARC Monthioux, THIERRY Ondarçuhu, et al. Contact angle hysteresis at the nanometer scale[J]. Physical Review Letters, 2011. DOI: 10.1103/physrevlett.106.136102.
[13] TOSHIKAZU Yamada, KATSUO Fukuhara, KEN Matsuoka, et al. Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution[J]. Nature Communications, 2016. DOI: 10.1038/ncomms11402.
[14] 权颖楠. 电阻式编织绳柔性应变传感器的制备及性能评价[D]. 上海: 东华大学, 2020: 18-21.
QUAN Yingnan. Preparation and performance evaluation of resistance type woven rope flexible strain sen-sors[D]. Shanghai: Donghua University, 2020: 18-21.
[1] 范梦晶, 岳欣琰, 邵剑波, 陈雨, 洪剑寒, 韩潇. 基于静电纺纤维包芯纱的电容式扭转传感器构建及其传感性能[J]. 纺织学报, 2025, 46(02): 106-112.
[2] 张蕊, 叶苏娴, 王建, 邹专勇. 全织物型离电式柔性压力传感器的制备及其性能[J]. 纺织学报, 2025, 46(02): 113-121.
[3] 许君, 鹿楠, 李婷, 成玲, 牛丽, 郝天煦, 张诚. 基于人体呼吸力学的柔性可穿戴呼吸监测技术研究进展[J]. 纺织学报, 2025, 46(01): 217-226.
[4] 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233.
[5] 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88.
[6] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
[7] 杜蕾, 王士杰, 蒋之铭, 朱平. 无卤无磷阻燃聚酰胺超细纤维合成革的制备及其性能[J]. 纺织学报, 2024, 45(11): 162-169.
[8] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[9] 李露红, 罗天, 丛洪莲. 针织一体成形电容传感器设计及其性能[J]. 纺织学报, 2024, 45(10): 80-88.
[10] 汪宇佳, 王怡, 王雅思, 代方银, 李智. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(09): 10-17.
[11] 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145.
[12] 项雪雪, 刘娜, 郭佳祺, 高晶, 王璐, 胡修元. 图案化致热涤纶医用绷带的制备及其性能[J]. 纺织学报, 2024, 45(08): 198-204.
[13] 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106.
[14] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[15] 施楚, 李俊, 王云仪. 基于温度监测的糖尿病足预防性智能鞋袜研究进展[J]. 纺织学报, 2024, 45(07): 240-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!