纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 61-68.doi: 10.13475/j.fzxb.20240908101

• 纤维材料 • 上一篇    下一篇

聚酯纤维与聚乙烯/聚丙烯双组分纤维多孔吸声材料的制备及其性能

王容容, 周洲, 冯祥, 申莹, 刘峰, 邢剑()   

  1. 安徽工程大学 纺织服装学院, 安徽 芜湖 241000
  • 收稿日期:2024-09-29 修回日期:2024-10-24 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 邢剑(1989—),男,副教授,博士。研究方向为纤维及非织造功能材料、纤维增强复合材料等。E-mail:xingjian@ahpu.edu.cn
  • 作者简介:王容容(1998—),女,硕士生。主要研究方向为纤维功能材料。
  • 基金资助:
    安徽工程大学引进人才科研启动基金项目(022YQQ014);国家自然科学基金项目(2203114);大学生创新训练项目(S20221363229)

Preparation and properties of porous sound absorption materials made from polyester/ethylene-propylene fibers

WANG Rongrong, ZHOU Zhou, FENG Xiang, SHEN Ying, LIU Feng, XING Jian()   

  1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2024-09-29 Revised:2024-10-24 Published:2025-02-15 Online:2025-03-04

摘要:

针对噪声污染问题,以聚对苯二甲酸乙二醇酯纤维(PET)和聚乙烯/聚丙烯双组分纤维(ES)为原料,采用针刺工艺,结合热风黏合技术,制备PET/ES纤维多孔吸声非织造材料。借助扫描电子显微镜、毛细流孔径分析仪、电子织物强力仪、噪声振动测试系统对PET/ES纤维多孔吸声非织造材料结构形貌特征、孔径及其分布、力学性能和吸声性能进行表征。结果表明:所制备的吸声材料孔隙率最高可达91.22%,且随着热风黏合温度和黏合时间的增加,吸声材料的力学性能显著提升,相较于热加固前提升了2 044%;此外,PET/ES 纤维的配比和喂入量对材料的吸声系数有显著影响;ES纤维混入比例较低时材料对低频呈现较好的吸声系数,随着ES纤维含量增加可显著提升材料对高频段的吸声系数。

关键词: 聚酯纤维, 聚乙烯/聚丙烯双组分纤维, 多孔结构, 非织造材料, 吸声性能, 热风黏合工艺

Abstract:

Objective Noise pollution is listed as one of the four major pollutants in the world, along with water pollution, air pollution, and solid waste pollution, which seriously endangers human health. Therefore, it is of great importance to study sound absorption materials with simple processes and universal applicability. PET/ES fiber porous sound absorption nonwoven materials were prepared by using polyethylene terephthalate fiber (PET) and polyethylene/polypropylene bicomponent fiber (ES) as raw materials, using the needling process in combination with hot air bonding technology.

Method PET and ES fibers of different ratios (9∶1, 8∶2, 7∶3, 6∶4, 5∶5 for PET/ES fibers) were mixed, and the fibers were weighed in different qualities (20 g, 40 g, 60 g, 80 g, 100 g), and the fibers were opened, carded, and then needled to obtain the PET/ES composite fiber mesh. The PET/ES composite fiber porous sound absorption nonwoven material was prepared by the hot air bonding with regulated hot melt temperature (135 ℃ and 145 ℃) and bonding time (10, 20, and 30 min). With a scanning electron microscope, pore size analyzer, electronic fabric strength machine, and noise vibration test system, the morphological characteristics, pore size and its distribution, mechanical properties, and sound absorption properties of the PET/ES fiber porous sound absorption nonwoven materials were characterized.

Results PET and ES fibers had good microscopic morphology, no obvious cross-linking between fibers, and the distribution of fiber diameters was more concentrated. The melting point of PET fibers was at 250 ℃, and the ES fibers had two melting points at 129 ℃ and 160 ℃, respectively, which indicated that in the ES fibers with the skin-core structure the polyethylene fibers (PE) were on the surface layer and polypropylene fibers (PP) were in the core layer. The mechanical properties of the sound absorption materials were significantly improved with the increase of hot air bonding temperature and bonding time (2 044% compared to the pre-hot reinforcement). The prepared sound absorption materials all had high porosity (above 80%, up to 91.22%), and the porosity tended to increase with the increase of fiber feeding and ES fiber content. In addition, the average pore size and standard deviation of pore size of the sound absorption materials decreased with the increase of fiber feeding and ES fiber content (up to 83.16% for pore size and 82.26% for standard deviation of pore size). The mechanical properties of the material are affected by the ratio and feeding amount of PET/ES fibers. An increase in fiber feeding caused increase in the surface density and thickness of the material, resulting in a significant increase in tensile stress of the sound absorption material. The increase in ES fiber content resulted in an increase in the number of bonding points between neighboring fibers within the fiber network, which led improvement of the structural stability of the fiber network, and enhancement of the tensile stress of the material. The ratio of PET/ES fibers and the amount of feeding had a significant effect on the sound absorption coefficient of the material, which was more obvious at low frequencies when the proportion of ES fibers was low, and the sound absorption coefficient of the material at high frequencies was significantly improved with the increase of ES fiber content.

Conclusion In summary, the prepared PET/ES fiber porous sound absorption materials demonstrated high porosity, and the mechanical properties of the sound absorption materials are significantly improved with the increase of the hot air bonding temperature and bonding time. In addition, the ratio of PET/ES fibers and the amount of feeding had a significant effect on the sound absorption coefficient of the material, which was better at low frequencies when the proportion of ES fibers was low, and the sound absorption coefficient of the material at high frequencies was significantly improved with the increase of ES fiber content. The materials developed in this study require a simple preparation process and demonstrate strong universality, which provide reference significance for the development of new multi-frequency band sound absorption materials.

Key words: polyester fiber, polyethylene/polypropylene bicomponent fiber, porous structure, nonwoven material, sound absorption performance, hot air bonding technology

中图分类号: 

  • TS174

图1

PET和ES纤维的SEM照片及其直径分布"

图2

PET和ES纤维的DSC曲线"

图3

热风黏合不同温度吸声材料的力学性能"

图4

热风黏合不同时间吸声材料的形貌"

表1

吸声材料的结构参数"

PET/ES
纤维配比
纤维喂入
量/g
厚度/
mm
面密度/
(g·m-2)
孔隙率/
%
20 0.999 164 87.75
40 1.379 260 85.93
9∶1 60 2.412 338 89.54
80 2.540 372 89.07
100 4.314 560 90.31
20 0.686 178 79.89
40 1.900 250 89.80
8∶2 60 2.305 324 89.10
80 2.501 532 83.51
100 3.25 632 84.93
20 0.877 204 81.39
40 1.507 295 84.34
7∶3 60 2.951 408 88.94
80 3.436 380 91.15
100 4.062 648 86.53
20 0.975 172 85.30
40 2.186 278 89.40
6∶4 60 3.309 366 90.78
80 3.172 422 88.91
100 6.233 648 91.34
20 1.032 126 89.47
40 1.487 290 83.19
5∶5 60 2.191 346 86.39
80 4.628 640 88.08
100 6.324 644 91.22

图5

纤维喂入量对吸声材料的孔径及其孔径分布的影响"

图6

PET与ES纤维配比对吸声材料的孔径及其孔径分布的影响"

图7

PET与ES纤维配比和纤维喂入量对吸声材料力学性能的影响"

图8

PET与ES纤维配比和纤维喂入量对吸声材料吸声性能的影响"

[1] SEDDEQ H S, ALY N M, MARWA A A, et al. Investigation on sound absorption properties for recycled fibrous materials[J]. Journal of Industrial Textiles, 2013, 43(1): 56-73.
[2] LIU H A, ZUO B Q. Structure and sound absorption properties of spiral vane electrospun PVA/PEO nanofiber membranes[J]. Applied Sciences, 2018, 8(2): 296.
[3] WEUVE J, D'SOUZA J, BECK T, et al. Long-term community noise exposure in relation to dementia, cognition, and cognitive decline in older adults[J]. Alzheimer's & Dementia, 2020, 17(3): 525-533.
[4] MÜNZEL T, SCHMIDT F P, STEVEN S, et al. Environmental noise and the cardiovascular system[J]. Journal of the American College of Cardiology, 2018, 71(6): 688-697.
doi: S0735-1097(17)41930-9 pmid: 29420965
[5] LIN Y T, CHEN T W, CHANG Y C, et al. Relationship between time-varying exposure to occupational noise and incident hypertension: a prospective cohort study[J]. International Journal of Hygiene and Environmental Health, 2020. DOI:10.1016/j.ijheh.2020.113487.
[6] 盖晓玲, 朱亦丹, 赵佳美, 等. 吸声材料的研究进展[J]. 中国环保产业, 2022(6): 43-46.
GAI Xiaoling, ZHU Yidan, ZHAO Jiamei, et al. Progress in research on sound absorbing materials[J]. China Environmental Protection Industry, 2022(6):43-46.
[7] MAZROUEI-SEBDANI Z, BEGUM H, SCHOENWALD S, et al. A review on silica aerogel-based materials for acoustic applications[J]. Journal of Non Crystalline Solids, 2021.DOI:10.1016/j.jnoncrysol.2021.120770.
[8] ARENAS J P, CROCKER M J. Recent trends in porous sound-absorbing materials[J]. Sound & Vibration, 2010, 44(7): 12-17.
[9] LEE J, KIM J, SHIN Y, et al. Multilayered graphene oxide impregnated polyurethane foam for ultimate sound absorbing performance: algorithmic approach and experimental validation[J]. Applied Acoustics, 2023. DOI: 10.1016/j.apacoust.2022.109194.
[10] 于长帅, 罗忠, 骆海涛, 等. 多孔吸声材料声学模型及其特征参数测试方法研究进展[J]. 材料导报, 2022, 36(4): 226-236.
YU Changshuai, LUO Zhong, LUO Haitao, et al. Research progress on acoustic model of porous sound absorbing materials and measurement method of its characteristic parameters[J]. Materials Reports, 2022, 36(4): 226-236.
[11] SHARMA S, SUDHAKARA P, SINGH J, et al. Emerging progressive developments in the fibrous composites for acoustic applications[J]. Journal of Manufacturing Processes, 2023, 102: 443-477.
[12] SUN Y, XU Y J, LI W J, et al. Functional modification of softwood fiber and its application in natural fiber-based sound-absorbing composite[J]. Industrial Crops and Products, 2024.DOI:10.1016/j.indcrop.2024.119044.
[1] 夏梦, 成悦, 刘蓉, 李大伟, 付译鋆. 普鲁士蓝涂层非织造材料在细菌检测中的应用[J]. 纺织学报, 2024, 45(12): 166-171.
[2] 韩炜, 邢晓梦, 张海宝, 姜茜, 刘天威, 卢佳浩, 闫志强, 巩继贤, 吴利伟. 基于粒子群算法对纬编针织物Johnson-Champoux-Allard模型参数反分析研究[J]. 纺织学报, 2024, 45(10): 103-112.
[3] 王玉玺, 唐春霞, 张丽平, 付少海. 纳米炭黑的Steglich酯化反应制备及乙二醇分散性[J]. 纺织学报, 2024, 45(07): 104-111.
[4] 鲁颖科, 金炳奇, 徐涛, 高一蕾, 邓炳耀, 李昊轩. 基于粘胶纤维非织造材料的太阳能水电联产装置设计及其性能[J]. 纺织学报, 2024, 45(07): 78-85.
[5] 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146.
[6] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[7] 秦子轩, 张恒, 李晗, 翟倩, 甄琪, 钱晓明. 非溶相共混熔喷非织造技术的研究进展[J]. 纺织学报, 2024, 45(03): 219-226.
[8] 南静静, 杜明娟, 孟家光, 余灵婕, 支超. 海水老化下类填充微穿孔板结构水下吸声材料的性能及其寿命预测[J]. 纺织学报, 2024, 45(02): 85-92.
[9] 范博, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界CO2流体染色聚酯纤维中的扩散行为[J]. 纺织学报, 2024, 45(02): 134-141.
[10] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[11] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[12] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[13] 亓晓杰, 孙莉娜, 廖海洋, 马博谋, 俞建勇, 王学利, 刘修才. 超柔软高吸湿改性聚对苯二甲酸乙二醇酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(09): 27-34.
[14] 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49.
[15] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
Viewed
Full text
24
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 10 0 0 14

  From Others local
  Times 8 16
  Rate 33% 67%

Abstract
62
Just accepted Online first Issue
0 0 62
  From Others local
  Times 43 19
  Rate 69% 31%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!