纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 227-235.doi: 10.13475/j.fzxb.20240908401

• 染整工程 • 上一篇    下一篇

氧化铋-硅橡胶基X射线防护织物的制备及性能

李鑫1, 叶培培1, 赵晓曼1,2,3,4(), 王鸿博5, 杨国荣6, 洪剑寒1,2,3,4   

  1. 1.绍兴文理学院 纺织科学与工程学院, 浙江 绍兴 312000
    2.浙江省清洁染整技术研究重点实验室,浙江 绍兴 312000
    3.绍兴文理学院 纤维基复合材料国家工程研究中心绍兴分中心, 浙江 绍兴 312000
    4.绍兴文理学院 绍兴市高性能纤维及制品重点实验室, 浙江 绍兴 312000
    5.江南大学 江苏省功能纺织品工程技术研究中心, 江苏 无锡 214122
    6.中纺院(浙江)技术研究院有限公司, 浙江 绍兴 312000
  • 收稿日期:2024-09-30 修回日期:2024-10-17 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 赵晓曼(1988—),女,讲师,博士。主要研究方向为新型功能纺织材料。E-mail:wxzhxm09@163.com
  • 作者简介:李鑫(2004—),女,本科生。主要研究方向为新型功能纺织材料。
  • 基金资助:
    浙江省公益技术研究计划项目(LGJ21E030001);国家自然科学基金项目(52300167);绍兴市基础公益类计划项目(重点)(2022A11004);中国纺织工业联合会科技指导性项目(2021005)

Preparation and properties of bismuth oxide-silicone rubber-based X-ray protective fabrics

LI Xin1, YE Peipei1, ZHAO Xiaoman1,2,3,4(), WANG Hongbo5, YANG Guorong6, HONG Jianhan1,2,3,4   

  1. 1. School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
    3. Shaoxing Sub-Center of National Engineering Research Center for Fiber-Based Composites, Shaoxing University, Shaoxing, Zhejiang 312000, China
    4. Shaoxing Key Laboratory of High Performance Fibers & Products, Shaoxing University, Shaoxing, Zhejiang 312000, China
    5. Jiangsu Engineering Technology Research Center of Function Textiles, Jiangnan University, Wuxi, Jiangsu 214122, China
    6. China Textile Academy (Zhejiang) Technology Research Institute Co., Ltd., Shaoxing, Zhejiang 312000, China
  • Received:2024-09-30 Revised:2024-10-17 Published:2025-02-15 Online:2025-03-04

摘要:

为研发质轻、无毒的X射线柔性辐射防护材料,采用涂层法制备氧化铋-硅橡胶基无铅X射线柔性防护涤纶织物,研究氧化铋含量对其刚柔性、密度、力学性能及其X射线防护性能的影响规律。结果表明:当每100 g硅橡胶中氧化铋含量为240 g时,防护材料的刚柔性最优;不同氧化铋含量的柔性防护材料的密度为0.8 ~ 1.6 g/cm3,显著低于常规含铅防护材料(3.79 g/cm3);当氧化铋含量为180~240 g时,防护材料的强伸性更好,并且其断裂伸长率优于未处理涤纶织物;综合考虑氧化铋-硅橡胶基无铅X射线柔性防护织物的X射线防护性能、柔软性和力学性能,每100 g硅橡胶中含240 g氧化铋为最优方案,涤纶织物单位体积的X射线防护比例为29.73%。

关键词: 辐射防护, 功能纺织品, 涤纶织物, 氧化铋, 硅橡胶, X射线防护, 涂层法

Abstract:

Objective X-ray, as a short-wave ionizing radiation source, is widely used in the fields of national defense, industrial flaw detection, medical diagnosis and treatment, archaeology and other fields. However, the overdose of X-ray radiation may cause serious harm to the human body and the environment. Most of the common radiation shielding materials contain lead. The lead and its compounds have high density and strong cumulative toxicity, and the prepared protective materials are bulky and with poor elasticity, which limit in the application of radiation protection. Therefore, it is necessary to develop lead-free, lightweight, and non-toxic flexible X-ray radiation protective materials.

Method A bismuth oxide-silicone rubber-based X-ray flexible protective fabric was prepared through surface coating process. Micro-nanoscale bismuth oxide was selected as the protective filler, silicone rubber as the coating carrier. The microscopy morphology, physical and mechanical properties and X-ray radiation protection properties of coated samples were characterized and analyzed. The influence of bismuth oxide content on the physical and mechanical properties of X-ray protective materials and their X-ray protective properties were studied.

Results The areal density of PET substrate fabric increased with the increasing content of bismuth oxide when the bismuth oxide content per 100 g of silicone rubber was lower than 360 g.The maximum areal density was 474 g/m2. When 100 g of silicone rubber contains more than 360 g of the bismuth oxide, the areal density of the coated material showed slight decrease and gradually reached a static level. The increase in bismuth oxide content made the thickness of PET fabric increase and then followed by a decrease. When the content of bismuth oxide reached 240 g per 100 g of silicone rubber, the PET fabric was with the maximum thickness of 0.39 mm. The density of flexible protective materials with different bismuth oxide contents was in the range of 0.8 to 1.6 g/cm3, compared to 3.79 g/cm3of the commercial lead-containing protective materials. It is evident that the density of the prepared coated fabric was significantly lower than that of conventional lead-containing protective materials.

The coated fabrics exhibited poor bending performance comparing with the pristine fabric. The bending elastic modulus tended to increase first and then decrease with the increase of bismuth oxide content. The SEM and EDS images showed that the bismuth oxide powder was dispersed evenly in the silicone rubber when the bismuth oxide content per 100 g of silicone rubber was less than 240 g. When the bismuth oxide content per 100 g of silicone rubber exceeded 240 g, the bismuth oxide powder gradually formed some self-aggregated particles, resulting in poor dispersion in the silicone rubber. When the bismuth oxide content per 100 g of silicone rubber reached 240 g, the bismuth element was evenly and densely distributed on the fabric surface. There was no powder dropping on the surface of the fabric sample, which was conducive to X-ray protection and practical application. The coating of bismuth oxide-silicone rubber enhanced the breaking strength of PET fabrics. The breaking elongation of coated fabrics was lower than the pristine sample except for the fabrics with bismuth oxide contents of 180 to 240 g per 100 g of silicone rubber. The highest X-ray protection ratio of PET fabrics was 28.81% when the bismuth oxide content reached 360 g per 100 g of silicone rubber. However, when the bismuth oxide content per 100 g of silicone rubber was 240 g, the highest X-ray protection ratio per unit density of PET fabric reached 29.73%.

Conclusion The maximum thickness of coated PET fabric was 0.39 mm when the content of bismuth oxide reached 240 g per 100 g of silicone rubber. The density of flexible protective materials with different bismuth oxide contents was in the range of 0.8 to 1.6 g/cm3, which was significantly lower than that of conventional lead-containing protective materials. The maximum load of bismuth oxide was 360 g per 100 g of silicone rubber. Bwteen bismuth oxide content 0 and 360 g per 100 g of silicone rubber, 240 g was found the the optimal for lightweight and softness. For practical application of flexible X-ray protective materials, dispersion uniformity of bismuth oxide in silicone rubber and drop of particles from the fabric surface are two important considerations. The bismuth oxide content of less than 240 g per 100 g of silicone rubber should be selected, considering the parameters of X-ray protection performance, softness and mechanical properties of the coated PET fabrics, the optimal filling amount of bismuth oxide per 100 g of silicone rubber was 240 g. The X-ray protection ratio per unit density of PET fabric was 29.73%. The X-ray protection ratio was approximated to be 31.9% for the nanocomposite materials prepared with polymethyl methylmethacrylate (PMMA) as the polymer matrix and bismuth oxide nanoparticles as the filler. In addition, the thermal stability and the breaking strength of PET fabrics after coating was improved.

Key words: radiation protection, functional textile, polyester fabric, bismuth oxide, silicone rubber, X-ray protection, coating process

中图分类号: 

  • TL733

表1

流动胶质涂层液的配方"

样品编号 透明液
体硅橡
胶B质
量/g
氧化
铋质
量/g
乙酸乙
酯质
量/g
固化
剂质
量/g
防护材料
中氧化铋
的质量分
数/%
SR/Bi2O3 100/0 100 0 10 2 0.0
SR/Bi2O3 100/60 100 60 30 2 37.0
SR/Bi2O3 100/120 100 120 60 2 54.1
SR/Bi2O3 100/180 100 180 90 2 63.8
SR/Bi2O3 100/240 100 240 120 2 70.2
SR/Bi2O3 100/300 100 300 150 2 74.6
SR/Bi2O3 100/360 100 360 180 2 77.9
SR/Bi2O3 100/420 100 420 210 2 80.5
SR/Bi2O3 100/480 100 480 240 2 82.5

图1

刮涂法制备氧化铋-硅橡胶基X射线柔性防护材料"

图2

斜面法测定织物刚柔性示意图"

图3

涤纶织物的面密度随氧化铋含量的变化曲线"

图4

样品厚度和密度随氧化铋含量的变化曲线"

图5

抗弯刚度和抗弯弹性模量随氧化铋含量的变化曲线"

图6

氧化铋的粒径分布与SEM照片"

图7

不同氧化铋含量的涤纶织物表面扫描电镜照片"

表2

不同氧化铋含量的涤纶织物中铋元素的含量"

每100 g硅橡胶中
氧化铋的质量/g
60 120 180 240 300 360 420 480
铋元素含量/% 34.1 38.3 52.2 58.9 61.4 68.8 70.3 73.9

图8

不同氧化铋含量的涤纶织物中铋元素的能谱图"

图9

断裂强力和断裂伸长率随氧化铋含量的变化曲线"

图10

涂层前后涤纶织物的热重曲线"

图11

X射线防护比例随氧化铋含量的变化曲线"

[1] YONPHAN S, CHAIPHAKSA W, KALKORNSURAPRANEE E, et al. Development of flexible radiation shielding materials from natural rubber/Sb2O3 composites[J]. Radiation Physics and Chemistry, 2022. DOI: 10.1016/j.radphyschem.2022.110379.
[2] GHOLAMZADEH L, SHARGHI H, AMINIAN M K. Synthesis of barium-doped PVC/Bi2WO6 composites for X-ray radiation shielding[J]. Nuclear Engineering and Technology, 2022, 54(1): 318-325.
[3] LI Z, ZHOU W, ZHANG X, et al. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: layered structure design and shielding mechanism[J]. Scientific Reports, 2021, 11(1): 1-13.
[4] BUKHVALOVA S Y, ASMOLOVA N F, LOPATINA T I, et al. Bismuth and thorium fluorides as efficient X-ray radiation shielding materials[J]. Radiation Physics and Chemistry, 2021. DOI: 10.1016/j.radphyschem.2021.109388.
[5] REDDY B C, MANJUNATHA H C, VIDYA Y S, et al. X-ray/gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method[J]. Nuclear Engineering and Technology, 2022, 54(3): 1062-1070.
[6] ZAREI M, SINA S, HASHEMI S A. Superior X-ray radiation shielding of biocompatible platform based on reinforced polyaniline by decorated graphene oxide with interconnected tungsten-bismuth-tin complex[J]. Radiation Physicsand Chemistry, 2021. DOI: 10.1016/j.radphyschem.2021.109588.
[7] 闫林萍, 沈悦, 李昊, 等. 超细纤维-稀土元素复合X射线防护材料的制备及性能[J]. 材料工程, 2023, 51(4): 167-176.
doi: 10.11868/j.issn.1001-4381.2022.000053
YAN Linping, SHEN Yue, LI Hao, et al. Preparation and properties of microfiber-rare earth elements composites as-ray protective materials[J]. Journal of Materials Engineering, 2023, 51(4): 167-176.
doi: 10.11868/j.issn.1001-4381.2022.000053
[8] LI W, CHEN S, PENG M, et al. Prediction of γ-ray shielding performance and study of Bi/PU coated fabric[J]. Textile Research Journal, 2022, 93(9/10): 2303-2316.
[9] YU L, PEREIRA A L C, TRAN D N H, et al. Bismuth oxide films for X-ray shielding: effects of particle size and structural morphology[J]. Materials Chemistry & Physics, 2021, 260(2):1-7.
[10] 廖益传. 基于组合填料的射线防护柔性复合材料的制备和性能研究[D]. 绵阳: 中国工程物理研究院, 2018: 3-25.
LIAO Yichuan. Preparation and properties of flexible composite materials for radiation protection based on composite fillers[D]. Mianyang: China Academy of Engineering Physics, 2018: 3-25.
[11] 吴巧英, 胡滢, 吴春胜, 等. 不同织物弯曲性能测试仪测试结果的比较[J]. 纺织学报, 2015, 36(7): 126-130.
WU Qiaoying, HU Ying, WU Chunsheng, et al. Comparative analysis on test results of different fabric bending behavior test apparatus[J]. Journal of Textile Research, 2015, 36(7): 126-130.
[12] 左亚君, 蔡赟, 王蕾, 等. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(4): 74-79.
ZUO Yajun, CAI Bin, WANG Lei, et al. Influence of ply number of cotton yarns on fabrics performance[J]. Journal of Textile Research, 2021, 42(4): 74-79.
[13] LIU W, ZHANG X, WANG H, et al. Flexible lightweight Bi2O3-rubber based materials for X-ray protection[J]. Radiation Physics and Chemistry, 2024. DOI: 10.1016/j.radphyschem.2023.111395.
[14] MOTAKEF-KAZEMI N, RASHIDIAN M. Synthesis and characterization of bismuth oxide nanoparticle by thermal decomposition of bismuth-based MOF and evaluation of its nanocomposite[J]. Iranian Journal of Chemistry & Chemical Engineering, 2021, 40(1): 11-19.
[1] 郭庆, 毛阳顺, 任亚杰, 刘济民, 王怀芳, 朱平. 基于漆酶一步催化法的羊毛织物原位染色及阻燃功能化[J]. 纺织学报, 2025, 46(02): 161-169.
[2] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[3] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[4] 朱琳, 王展鹏, 吴宝宅, 汪少朋, 刘一鸣, 代成娜, 陈标华. 废旧涤纶织物的溶剂萃取剥色及其对醇解的影响[J]. 纺织学报, 2025, 46(01): 103-110.
[5] 肖鑫, 李伟, 卢润, 姜会钰, 李青. 等离子体协同过氧化氢活化体系对纯棉水刺非织造布的练漂处理[J]. 纺织学报, 2024, 45(12): 118-127.
[6] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[7] 程献伟, 刘亚文, 关晋平, 陈瑞. 生物质植酸改性聚氨酯涂层锦纶6织物的制备及其阻燃性能[J]. 纺织学报, 2024, 45(06): 120-126.
[8] 邵明军, 蹇玉兰, 唐唯, 柴希娟, 万辉, 解林坤. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(04): 142-150.
[9] 方进, 张广知, 徐珍珍. 点击化学在功能纺织品制备中的应用研究进展[J]. 纺织学报, 2024, 45(03): 227-235.
[10] 范硕, 杨鹏, 曾锦豪, 宋潇迪, 龚昱丹, 肖遥. 抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能[J]. 纺织学报, 2024, 45(01): 152-160.
[11] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[12] 葛佳慧, 毛志平, 张琳萍, 钟毅, 隋晓锋, 徐红. 基于二维碳化钛材料修饰的功能棉针织物制备及其性能[J]. 纺织学报, 2023, 44(04): 132-138.
[13] 张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(01): 142-148.
[14] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[15] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
Viewed
Full text
14
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 4 0 0 10

  From Others local
  Times 4 10
  Rate 29% 71%

Abstract
47
Just accepted Online first Issue
0 0 47
  From Others local
  Times 42 5
  Rate 89% 11%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!