纺织学报 ›› 2008, Vol. 29 ›› Issue (3): 76-79.

• 服装工程 • 上一篇    下一篇

基于改进RBF网络的缝纫平整度模糊辩识系统

潘永惠;包芳;王士同   

  1. 江南大学;江南大学 江苏无锡214122;江阴职业技术学院;江苏江阴214405;江苏无锡214122
  • 收稿日期:2007-04-10 修回日期:2007-07-22 出版日期:2008-03-15 发布日期:2008-03-15

A fuzzy evaluation system of garment seam smoothness based on improved RBF network

PAN Yonghui;2;BAO Fang;2;WANG Shitong   

  1. 1.Jiangnan University;Wuxi;Jiangsu 214122;China;2.Jiangyin Polytechnic College;Jiangyin;Jiangsu 214405;China
  • Received:2007-04-10 Revised:2007-07-22 Online:2008-03-15 Published:2008-03-15

摘要: 针对缝纫平整度主观评价易受人为不确定因素影响的问题,运用FAST系统测量服装面料的力学性能指标,通过主因子法对所测指标进行分析,提取6个主因子作为神经网络的输入。引入FCM聚类算法对RBF神经网络进行改进,并根据聚类结果确定网络的隐层节点中心和宽度,提出一种缝纫平整度模糊辩识系统。实验表明,系统可以根据中厚型精纺毛型织物的不同结构及力学性能快速准确地给出该织物成衣后的缝纫性能评价指标。

Abstract: Garment seam subjective evaluation tends to be influenced by the evaluator.For this reason,this paper used FAST system to measure mechanical properties of garment fabric at low stress,and applied main factor method to analyze the measured mechanical properties,then extracted 6 main factors as the input of neural network.Employing FCM clustering algorithm to improve RBFNN(calculating prototypes and widths of hidden nodes with clustering results),this paper proposed a fuzzy seam smoothness evaluation system.Experimental results demonstrate that the proposed approach can quickly and accurately present the evaluation result of the seam smoothness of garment made of thick worsted fabric of various structures and mechanical properties.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!