纺织学报 ›› 2010, Vol. 31 ›› Issue (7): 46-49.

• 纺织工程 • 上一篇    下一篇

基于动态模糊聚类的织物织造疵点检测算法

沈炜; 刘文昊   

  1. 浙江理工大学信息电子学院
  • 收稿日期:2009-07-10 修回日期:2010-01-31 出版日期:2010-07-15 发布日期:2010-07-15
  • 通讯作者: 沈炜

Fabric weaving defect detection algorithm based on dynamic fuzzy clustering

SHEN Wei; LIU Wenhao   

  1. Information & Electronics College, Zhejiang Sci-Tech University
  • Received:2009-07-10 Revised:2010-01-31 Online:2010-07-15 Published:2010-07-15
  • Contact: SHEN Wei

摘要:

针对目前织物疵点检测算法普遍存在的适应性不强,实时性不高等问题,通过对织物织造疵点的深入分析,提出一种基于动态模糊聚类的织物织造疵点检测算法。该算法在对织物图像进行预处理之后,以织物图像的经纬向灰度均值投影为特征值,然后根据疵点区域灰度均值投影的畸变现象,利用动态模糊聚类算法分离出可能的疵点区域,最后设置合适的畸变密度和畸变度阈值对“伪疵点”区域实施有效过滤,以识别并定位疵点区域。实验证明,该算法可靠稳定,适应性强,并且具有较强的抗噪声干扰的能力。

Abstract:

A fabric weaving defect detection algorithm based on dynamic fuzzy clustering is proposed to solve problems such as poor adaptability and real-time in fabric defect detection algorithms. The gray average projection in the weft and warp direction is regarded as eigenvalue after images preprocessing. The suspicious defect region is separated with dynamic fuzzy clustering algorithm according to the projection distortion on the gray average in defect region, which is located and extracted from suspicious defect region by selecting proper thresholds of the distortion density and degree so that the pseudo defect region is filtered out effectively. The results of experiments show that this algorithm has the features of high reliability, strong adaptability and anti-noise-interference ability.

中图分类号: 

  • TS101.92
[1] 陈莉 邹龙 孙卫国. 废弃亚麻热解处理吸油材料的制备及其吸附性能[J]. 纺织学报, 2017, 38(06): 17-22.
[2] 吴佳佳 唐虹 何姗姗. 织物含尘量对其热湿传递性能的影响[J]. 纺织学报, 2015, 36(03): 32-0.
[3] 汪泽幸 蒋金华 陈南梁. 反复加载下机织物增强柔性复合材料的力学行为[J]. 纺织学报, 2014, 35(1): 51-0.
[4] 付贤文, 高晶. 鹅、鸭绒纤维形态结构差异及对保暖性能的影响[J]. 纺织学报, 2011, 32(12): 10-14.
[5] 徐安长;张敏;潘志娟. 静电纺MWNTs/丝素复合纳米纤维毡的结构与性能[J]. 纺织学报, 2010, 31(6): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!