纺织学报 ›› 2011, Vol. 32 ›› Issue (11): 53-57.

• 纺织工程 • 上一篇    下一篇

基于离散粒子群算法的织物疵点特征选择

艾解清1,高济2,彭艳斌3   

  1. 1. 浙江大学计算机学院
    2. 浙江大学
    3. 浙江科技学院
  • 收稿日期:2010-12-07 修回日期:2011-06-21 出版日期:2011-11-15 发布日期:2011-11-15
  • 通讯作者: 艾解清 E-mail:dotrai@126.com
  • 基金资助:

    863国家高技术研究发展课题(2007AA01Z187);国家自然科学基金项目(60775029);浙江省教育厅科研计划资助项目(Y201016929);国家级;省级

Fabric defects feature selection based on binary partial swarm optimization

  • Received:2010-12-07 Revised:2011-06-21 Online:2011-11-15 Published:2011-11-15

摘要: 为提高识别织物疵点的准确率,提出了基于离散粒子群算法(BPSO)进行织物疵点特征选择的方法。首先收集织物疵点图像并进行预处理,提取常用的纹理特征构成候选特征,然后采用BPSO对这些候选特征进行选择,得到优选特征和冗余特征。最后分别在这三类特征下训练支持向量机并进行织物疵点识别测试。实验结果表明,优选特征的疵点识别准确率大大高于另外两类特征,验证了该方法是有效的。

Abstract: In order to improve the accuracy of defects classification, a texture feature selection method was proposed based on binary partial swarm optimization (BPSO). The first step of this method is collecting and preprocessing defect images, then extracting the texture features to form candidate features. Then the BPSO was applied to select optimal features and redundant features from the candidate features. Finally, the support vector machine (SVM) is trained with these three features to classify defects, respectively. The experiments show that the classification accuracy of optimal features is greatly better than the other two features; demonstrating that the method is feasible and effective for feature selection of fabric defects.

中图分类号: 

  • TP 391
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!