纺织学报 ›› 2011, Vol. 32 ›› Issue (9): 119-124.

• 机械与器材 • 上一篇    下一篇

基于独立成分分析算法的纺纱锭子噪音测试

刘晓芝1,杨建国1,李蓓智2,吕志军1,马胤琛1   

  1. 1. 东华大学
    2.
  • 收稿日期:2010-09-06 修回日期:2011-01-26 出版日期:2011-09-15 发布日期:2011-09-15
  • 通讯作者: 刘晓芝 E-mail:lxz_00@mail.dhu.edu.cn
  • 基金资助:

    上海市重点学科项目建设资助(B602);教育部纺织装备工程技术研究中心基金资助;省级

Applied research of independent component analysis in the noise test of spinning spindle

  • Received:2010-09-06 Revised:2011-01-26 Online:2011-09-15 Published:2011-09-15

摘要: 纺纱锭子性能的优劣对生产效率和纱线质量具有决定性的影响。本文以纺纱锭子运转中的噪音信号为考察对象,对纺纱锭子运转过程进行分析。利用频谱分析和FastICA算法对工作状态中的锭子声压信号进行噪音源数据分离分析,得到工作状态下源信号的主频率。将工作状态下源信号的主频率与锭子不运转下的噪音主频率进行对比,38.88%分离主频率与锭子不运转下的噪音主频率一致,44.44%分离主频率与锭子不运转下的噪音主频率相近,最小误差为0.05%。实验与分析结果表明,FastICA算法用于噪音源信号主频率分离的有效性和正确性。

Abstract: The performance of spinning spindles decisively influences the production efficiency and yarn quality. This article analyzes the noise during the running process of spinning spindles. Sound pressure signals which collected during the experiment is analyzed and separated by spectrum analysis method and FastICA algorithm. Thus the source of the noise component during the running process of spinning spindles is separated and contrast with the main frequency of the motor noise. 38.88% of the main frequency is identical, 44.44% of the main frequency is close with the minimum error 0.05%. Experimental and analytical results show the effectiveness and correctness of FastICA algorithm used in sound pressure signals separation.

中图分类号: 

  • TP301.6
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!