摘要: 本文提出了一种基于人工神经网络的织物疵点分类方法。首先利用灰度共生矩阵提取织物疵点图像的纹理特征参数;然后阐述前馈BP神经网络的拓扑结构,并提出该网络的具体训练过程;最后利用人工神经网络对真实织物疵点样本进行分类,实验采用五类织物样本,网络训练完成后得到实际分类的疵点数据,并利用该数据进行织物疵点分类,分类的准确率达到100%,从而验证了该方法的可行性。
中图分类号:
null |
[1] | 杨晓波. 基于GMRF模型的统计特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(4): 137-142. |
[2] | 杨晓波. 基于自适应离散小波变换的混合特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(1): 133-137. |
|