纺织学报 ›› 2011, Vol. 32 ›› Issue (9): 47-52.
• 纺织工程 • 上一篇 下一篇
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
Received:
Revised:
Online:
Published:
摘要: 本文构建了图像采集,数据信号处理和光源的纬编针织物疵点实时检测系统.针对纬编针织物部分疵点在图像上灰度分布明显,但形状不规则的特点,使用了细胞神经网络对疵点进行分割;对于灰度差异较小,却呈线形状分布的疵点,引入线检测的方法,使用Radon变换定位疵点的位置.实验表明,该算法可以有效的检测出破洞,漏针,飞花,跳纱,横路和花针等纬编针织物疵点.
Abstract: The real-time system including the image acquisition, signal processing and illumination device was developed to detect the weft knitted fabric defects in this paper. The cellular neural network was applied for detecting the defects with obvious gray level distribution and irregular shape. While the line detection based on Radon transform was first proposed to indentify the defects according to their linear shape, because the gray level distribution of the image and background of such defects are very similar. The experiments indicated that the algorithms could effectively detect defects like hole, dropped stitch, fly, float, course mark and miss tuck.
中图分类号:
孙尧 龙海如 郭晓芳. 纬编针织物疵点的实时检测[J]. 纺织学报, 2011, 32(9): 47-52.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://www.fzxb.org.cn/CN/
http://www.fzxb.org.cn/CN/Y2011/V32/I9/47
Cited