纺织学报 ›› 2012, Vol. 33 ›› Issue (1): 6-10.

• 纤维材料 • 上一篇    下一篇

基于近红外技术的苎麻纤维素及胶质含量快速测定

姜伟1,韩光亭2,张元明1,陈建华3   

  1. 1. 东华大学纺织学院 2. 青岛大学纤维新材料与现代纺织实验室
    3. 中国农业科学院麻类研究所
  • 收稿日期:2011-01-06 修回日期:2011-05-13 出版日期:2012-01-15 发布日期:2012-01-10
  • 通讯作者: 韩光亭 E-mail:kychgt@163.com
  • 基金资助:

    国家级

Fast Quantitative Analysis of Cellulose and Gum Content in Ramie by Near-infrared Techniques

  • Received:2011-01-06 Revised:2011-05-13 Online:2012-01-15 Published:2012-01-10
  • Contact: Guang-Ting HAN E-mail:kychgt@163.com

摘要: 苎麻作为我国重要纺织用纤维素纤维资源,其经常进行化学成分定量分析工作,因此需要一种快速高效的定量分析手段。本研究在前期工作的基础上,使用AOTF近红外光谱仪,利用近红外漫反射光谱(NIR)技术,采用偏最小二乘法(PLS),并对比近红外样品厚度对建模的影响,建立了测定苎麻纤维素及胶质含量的NIR校正模型。实验结果表明,所建苎麻化学成分NIR模型预对纤维素含量预测平均相对误差为1.11%,胶质含量预测平均相对误差为4.54%,预测值与化学值误差较小,可以进行苎麻纤维素及胶质含量预测工作。同时发现,样品厚度越大,所扫描得到光谱所建模型预测精确度越高。

Abstract: As an important cellulose raw material in textile industry in China, ramie needs a fast and accurate analysis method to determine its chemical composition. In this research, calibration models were established using near-infrared (NIR) spectroscopy assisted with partial least square (PLS) to predict the main chemical compositions of ramie based on the prior work using Acousto-optic tunable filter (AOTF) near infrared spectrograph, and the thickness of samples affecting calibration model was also discussed. Results show that the average relative error (ARE) between the predict value and the wet chemistry measured value of cellulose and gum content were 1.11% and 4.54%, which were low enough for prediction. Meanwhile, the thicker of sample, the more accurate for NIR model to prediction.

中图分类号: 

  • TS101.8
[1] 洪剑寒 潘志娟 张小英 周燕. 应用原位聚合法的PTT/毛/聚苯胺复合导电纱制备与性能[J]. 纺织学报, 2014, 35(10): 30-0.
[2] 田伟 韩旭 邢肖平 祝成炎 冯连芳. 提花水刺非织造布的吸湿扩散性能[J]. 纺织学报, 2014, 35(9): 47-0.
[3] 金关秀 祝成炎. 基于TRIZ理论的喷水织机织造织物设计新途径[J]. 纺织学报, 2012, 33(10): 43-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!