纺织学报 ›› 2013, Vol. 34 ›› Issue (12): 37-0.
高晓平1 李友国2 孙以泽3 王晓清1
摘要: 为控制纱线张力波动,提高毯面质量,研究了建立地毯织造过程中粘弹性纱线束振动模型及其影响因素。为此,应用三参数本构关系表征纱线束粘弹性,结合轴向几何非线性变形和材料非线性因素,应用牛顿第二定律建立纱线束横向振动方程。经无量纲化和一阶Galerkin截断,应用四阶Runge-Kutta法求解常微分方程,可得纱线束喂入速度、张力波动幅度以及阻尼系数对振动特性的影响。结果显示,在纱线束材料确定下,降低纱线束振动振幅从而减少张力波动的方法主要是增加阻尼系数,如增加提花罗拉表面摩擦系数。
参考文献 [1] Chen L, Yang X, Cheng C. Dynamic stability of an axially accelerating viscoelastic beam[J]. European Journal of Mechanics - A/Solids. 2004, 23(4): 659-666. [2] Ghayesh M.H, Balar S. Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams[J]. Applied Mathematical Modelling. 2010, 34(10): 2850-2859. [3] Ghayesh M.H. Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation[J]. International Journal of Non-Linear Mechanics. 2010, 45(4): 382-394. [4] ?z H.R, Pakdemirli M, Boyac1 H. Non-linear vibrations and stability of an axially moving beam with time-dependent velocity[J]. International Journal of Non-Linear Mechanics. 2001, 36(1): 107-115. [5] ?z H.R, Pakdemirli M. Vibrations of axially moving beam with time-dependent velocity [J]. Journal of Sound and Vibration. 1999, 227(2): 239-257. [6] Usik L, Hyungmi Oh. Dynamics of an axially moving viscoelastic beam subject to axial tension[J]. International Journal of Solids and Structures. 2005, 42(8): 2381-2398. [7] Ghayesh M.H, Balar S. Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams[J]. International Journal of Solids and Structures. 2008, 45(25-26): 6451-6467. [8] Ghayesh M.H. Nonlinear transversal vibration and stability of an axially moving viscoelastic string supported by a partial viscoelastic guide[J]. Journal of Sound and Vibration. 2008, 314(3-5): 757-774. [9] Andrianov I.V, Awrejcewicz J. Dynamics of a string moving with time-varying speed[J]. Journal of Sound and Vibration. 2006, 292(3-5): 935-940.[10] Zhang N, Chen L. Nonlinear dynamical analysis of axially moving viscoelastic strings[J]. Chaos, Solitons & Fractals. 2005, 24(4): 1065-1074.[11] Chen L, Chen H, Lim C.W. Asymptotic analysis of axially accelerating viscoelastic strings[J]. International Journal of Engineering Science. 2008, 46(10): 976-985.[12] Suweken G, Van Horssen W.T. On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part I: The string-like case[J]. Journal of Sound and Vibration. 2003, 264(1): 117-133.[13] Marynowski K. Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension[J]. Chaos, Solitons & Fractals. 2004, 21(2): 481-490.[14] Suweken G, Van Horssen W.T. On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity[J]. Nonlinear Dynamics. 2003, 31(2): 197-223.[15] Koivurova H. The numerical study of the nonlinear dynamics of a light, axially moving string[J]. Journal of Sound and Vibration. 2009, 320(1-2): 373-385.[16] 沈丹峰,叶国铭. 织造过程中经纱振动特性的分析[J]. 纺织学报. 2007, 28(5): 41-46.[17] Clark J.D, Fraser W.B, Stump D M. Modelling of tension in yarn package unwinding[J]. Journal of Engineering Mathematics. 2001, 40(1): 59-75.[18] Kurilenko Z.N, Matyushev II, Goncharenko A F, et al. Yarn tension during unwinding from a package[J]. Fibre Chemistry. 1980, 12(3): 189-191.[19] Vangheluwe L, Sleeckx B, Kiekens P. Numerical simulation model for optimisation of weft insertion on projectile and rapier looms[J]. Mechatronics. 1995, 5(2-3): 183-195.[20] Murakami F, Watanabe T, Tazaki H, et al. Dynamic tension on yarns being unwound from a beam.[J]. Journal of the Textile Machinery Society of Japan. 1979, 25(4): 93-99.[21] Koo Y. Yarn tension variation on the needle during the knitting process[J]. Textile Research Journal. 2004, 74(4): 314-317.[22] Gao X, Sun Y, Meng Z, et al. Analytical approach of mechanical behavior of carpet yarn by mechanical models[J]. Materials Letters. 2011, 65(14): 2228-2230.[23] 张伟,胡海岩. 非线性动力学理论与应用的新进展[M]. 第一版. 北京: 科学出版社, 2009. |
[1] | 王双连;魏涛;郭乙木. 织物悬垂特性的有限元计算分析[J]. 纺织学报, 2004, 25(06): 60-62. |
|