纺织学报 ›› 2014, Vol. 35 ›› Issue (6): 62-0.

• 纺织工程 • 上一篇    下一篇

改进型奇异值分解在织物疵点检测上的应用

景军锋1,2,李江南1,李鹏飞1,2   

    1. 西安工程大学电子信息学院
    2. 陕西省纺织印染自动化工程技术研究中心
  • 收稿日期:2013-07-05 修回日期:2014-02-14 出版日期:2014-06-15 发布日期:2014-06-09
  • 通讯作者: 景军锋 E-mail:jingjunfeng0718@QQ.COM
  • 基金资助:

    国家自然科学基金资助项目;陕西省教育厅项目;陕西省科技厅项目

Research on detection of defects in fabrics using improved singular value decomposition

  • Received:2013-07-05 Revised:2014-02-14 Online:2014-06-15 Published:2014-06-09
  • Contact: Feng JunJING E-mail:jingjunfeng0718@QQ.COM

摘要: 为了识别不同织物表面多种类型的疵点,提出了一种基于矩阵奇异值分解(SVD)的疵点检测方法。首先采用自适应分割技术提取织物图像中包含疵点的感兴趣区域(ROI),其次将包含疵点的ROI部分继续分割成若干小的不重叠的子图像,并对子图像进行奇异值分解。由于奇异值与织物图像的能量信息相关,通过去除表征织物纹理背景能量的奇异值,以余下的奇异值重组子图像,从而增加疵点区域与纹理背景的能量差异。最后再对ROI区域进行复原时,会出现子图像重构过程不完全连接的情况,采用二值化阈值处理可以消除影响,完成检测目的。实验证明,所提出的改进型奇异值分解技术,耗时短,效率高,对于选取的7种纹理结构不同的织物中大多数疵点,都能够识别其形状和位置。

关键词: 矩阵奇异值分解, 织物疵点检测, 自适应分割, ROI区域

Abstract: Focusing on identification of different types of defects on different fabrics, a defects detection method based on matrix singular value decomposition (SVD) was presented. Firstly, a region of interest (ROI) containing the defect is identified by a proposed adaptive partitioning technique. The ROI portion of fabric image is then divided into several small non-overlapping sub-images for the singular value decomposition. Since singular values are related to energy information of the image, the remaining singular values are used to restructure the sub-image by getting rid of the singular values represented the fabric texture background energy information, thus improving the energy difference between defect region and texture background. When these sub-images are used to restore the ROI area, there will be a situation that the gap is not fully connected. Binarization threshold processing is then used to eliminate the impact, thus accomplishing the fabric defect detection. Experiments have shown that the improved singular value decomposition technique presented is short time-consuming and high efficiency. Most defects can be able to identify their location and shape in the selection of the seven different fabric textures.

Key words: singular value decomposition, fabric defect detection, self-adaptive partitioning technique, ROI region

中图分类号: 

  • TS 101.9
[1] 尉苗苗 李岳阳 蒋高明 丛洪莲. 应用最优Gabor滤波器的经编织物疵点检测[J]. 纺织学报, 2016, 37(11): 48-54.
[2] 石美红 张正 郭仙草 陈永当. 基于显著纹理特征的织物疵点检测方法[J]. 纺织学报, 2016, 37(10): 42-049.
[3] 厉征鑫 周建 潘如如 刘建立 高卫东. 应用单演小波分析的织物疵点检测[J]. 纺织学报, 2016, 37(09): 59-64.
[4] 景军锋 范晓婷 李鹏飞 张蕾 张宏伟. 应用Gaussian回代交替方向图像分解算法的色织物疵点检测[J]. 纺织学报, 2016, 37(06): 136-141.
[5] 管声启 高照元 吴宁 徐帅华. 基于视觉显著性的平纹织物疵点检测[J]. 纺织学报, 2014, 35(4): 56-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!