纺织学报 ›› 2015, Vol. 36 ›› Issue (02): 1-6.

• 纤维材料 •    下一篇

两种离子液体溶剂干湿纺纤维素纤维的力学性能及孔结构研究

  

  • 收稿日期:2014-09-26 修回日期:2014-10-30 出版日期:2015-02-15 发布日期:2015-02-13
  • 通讯作者: 李晓俊 E-mail:junlx@mail.dhu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973计划)项目

Study of mechanical properties and pore structure of cellulose fibers regenerated from two ionic liquids by dry-wet spinning

  • Received:2014-09-26 Revised:2014-10-30 Online:2015-02-15 Published:2015-02-13
  • Contact: Xiao-Jun LI E-mail:junlx@mail.dhu.edu.cn

摘要:

以离子液体氯化1-丁基-3-甲基咪唑([BMIM]Cl)和醋酸1-乙基-3-甲基咪唑([EMIM]Ac)为溶剂,通过干喷湿法纺丝工艺成功制备了高强型、高抗原纤化型和普通型3种典型的再生纤维素纤维,采用纤度-强伸度仪、湿摩擦和小角X射线散射法对再生纤维素纤维的力学性能、孔尺寸及其取向分布进行了表征,并探讨了其成型的机制。结果表明:纺丝成型时的溶剂种类、原料聚合度、原液挤出胀大、拉伸应力、取向效应等因素决定了再生纤维素纤维的聚合度和取向度,进而促进具有不同力学性能、孔径及孔取向分布再生纤维素纤维的形成。

关键词: 离子液体, 干湿法纺丝, 强度, 抗原纤化性能, 孔径

Abstract:

By dry-wet spinning of cellulose/[BMIM]Cl (1-butyl-3-methylimidazolium chloride) solution and cellulose/[EMIM]Ac (1-ethyl-3-methylimidazolium acetate) solution, three typical regenerated cellulose fibers with high-strength, fibrillation resistance, conventional strength respectively were successfully prepared. The mechanical properties, pore sizes and orientation of the regenerated cellulose fibers were investigated by utilizing tensile-fineness tester, wet friction and small angle X-ray scattering. The mechanism of formation was discussed. The results showed that ionic liquids, degree of polymerization (DP) of cellulose, extrusion swelling, draw stress and orientation of the solution during the spinning process had significant impacts on the DP and orientation of the regenerated cellulose fibers, which promoted the formation of the regenerated cellulose fibers with various mechanical properties, pore sizes and pore orientation distributions.

Key words: ionic lipuid, dry-wet spinning, strength, fibrillation resistance, pore sizes

[1] Richard P Swatloski, Scott K Spear, JOHN D Holbrey, et al. Dissolution of cellulose with ionic liquids[J]. J. Am. Chem. Soc., 2002, 124: 4974-4975.
[2] Gino Bentivoglio, Thomas Roder, Mario Fasching , et al. Cellulose processing with chloride-based ionic liquids[J]. Lenzinger Berichte, 2006, 86: 154-161.
[3] Richard C Remsing, Richard P Swatloski, Robin D. Rogers, et al. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3- methylimidazolium chloride:a 13C and 35/37Cl NMR relaxation study on model systems[J]. Chem. Commun., 2006, (12): 1271- 1273.
[4] Zhang Hao, Wu Jin, Zhang Jun, et al. 1-Allyl-3- methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules, 2005, 38(20): 8272-8277.
[5] Birgit Kosan, Christorph Michels, Frank Meister. Dissolution and forming of cellulose with ionic liquids[J], Cellulose , 2008, 15(1): 59-66.
[6] 李东娟, 李坤兰, 马英冲,等. 纤维素在离子液体溶剂中溶解性能的研究进展[J]. 合成纤维, 2007, (2): 28-32.
[7] Jurgen Vitz, Tina Erdmenger, Claudia Haensch, et al. Extended dissolution studies of cellulose in imidazolium based ionic liquids[J]. Green Chemistry, 2009,11(3): 417-424.
[8] Song Hongzan, Zhang Jun, Niu Yanhua, et al. Phase transition and rheological behaviors of concentrated cellulose/ionic liquid solutions[J]. J Phys Chem B, 2010, 114: 6006-6013.
[9] 郭清华,蔡涛,张慧慧,等. 两种咪唑型离子液体对纤维素的溶解及纺丝性能的比较[J].合成纤维,2009,(4):20-25.
[10] Li Xiaojun, Li Nianke., Xu Jigang, et al. Cellulose fibers from cellulose/1-ethyl-3- methylimidazolium acetate solution by wet spinning with increasing spinning speeds[J]. J. Appl. Polym. Sci. 2014, 131: 40225.
[11] 李晓俊,李念珂,徐纪纲,等. 1-乙基-3-甲基咪唑醋酸盐溶剂小间隙干湿纺纤维素纤维的结构与性能[J]. 纺织学报,2014,35(5):1-6.
[12] 莫志深,张宏放. 晶态聚合物结构和X射线衍射[M]. 北京:科学出版社, 2003,289-292.
[13] Crawshaw J, Cameron R E. A small angle X ray scattering study of pore structure in Tencel cellulose fibres and the effects of physical treatments[J]. Polymer, 2000, 41: 4691-4698.
[1] 王宗乾 杨海伟 汤立洋 李长龙. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018, 39(11): 14-19.
[2] 卓萍 倪照鹏 李向梅 李强 闫克勤. 辐射热流作用下皮棉燃烧特性[J]. 纺织学报, 2018, 39(09): 29-33.
[3] 张恒 甄琪 钱晓明 杨红英 申屠宝卿 张一风 刘让同. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018, 39(01): 56-61.
[4] 张梅 贾紫璇 孙小娟 李宏伟. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018, 39(01): 1-5.
[5] 曹机良 孟春丽 曹毅 闫凯 吴宁杰 王潮霞. 烷基咪唑类双子型离子液体对涤纶织物的碱减量处理[J]. 纺织学报, 2018, 39(01): 79-83.
[6] 吴松 吕晓龙 武春瑞 高启君 张昊 李振东 孔晓. 拉伸残余应力对聚偏氟乙烯纤维力学性能的影响[J]. 纺织学报, 2017, 38(07): 28-33.
[7] 李长龙 汤立洋 王宗乾 汪小翠. 不同体系下羽毛绒的溶解性能及光谱特性[J]. 纺织学报, 2017, 38(04): 27-31.
[8] 黄伟 汪军. 复合纱线结构对单纱强力利用率的影响与分析[J]. 纺织学报, 2017, 38(02): 99-105.
[9] 梁必超 韩春艳 季轩 魏青 赵炯心 王建庆. 聚酯/聚酰胺共聚纤维的结构及其理化性能[J]. 纺织学报, 2016, 37(11): 1-7.
[10] 盛杰侦 闫新 秦俊霞 曹机良. 不对称咪唑类离子液体对腈纶缓染性能的影响[J]. 纺织学报, 2016, 37(10): 68-72.
[11] 叶晋浦 朱庆松 李晓俊 肖长发. 二醋酸纤维素与増塑剂熔融体系的制备与表征[J]. 纺织学报, 2016, 37(09): 6-11.
[12] 张磊 郝露 徐山青. 废弃棉/亚麻混纺织物制备活性炭的性能[J]. 纺织学报, 2016, 37(08): 21-25.
[13] 杜兆芳 张利玲 许云辉 董丹丹. 氧化竹浆纤维的丝素蛋白改性工艺研究[J]. 纺织学报, 2016, 37(08): 12-15.
[14] 田景山 王文敏 王聪 牛玉萍 罗宏海 勾玲 张亚黎 张旺锋. 机械采收方式对新疆棉品质的影响[J]. 纺织学报, 2016, 37(07): 13-17.
[15] 徐素梅 哈丽丹买买提 米娜瓦尔乌买尔. 月桂酸纤维素酯的酰化法制备及其成膜性能[J]. 纺织学报, 2016, 37(01): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑秀实. 弹性喷胶棉技术鉴定会[J]. 纺织学报, 1987, 8(01): 20 .
[2] 李伟;王维;田险峰;高增祥. 拉细羊毛及其混纺毛条的加工性能[J]. 纺织学报, 2004, 25(04): 34 -35 .
[3] 罗欣;迟克栋;江红;吴慧莉. 纺织品与塑料薄膜层压粘合研究[J]. 纺织学报, 2004, 25(03): 50 -51 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 邓桦;张纪梅;李秀明;李鹤;唐万生. 纳米二氧化钛多功能织物整理剂的制备与性能[J]. 纺织学报, 2006, 27(3): 92 -94 .
[6] 张圣瑞;何广德. 梳棉除尘设计中有关吸风形式的探讨[J]. 纺织学报, 1984, 5(08): 30 -34 .
[7] . 上海——开展技术咨询服务[J]. 纺织学报, 1984, 5(08): 10 .
[8] 马新敏;于伟东. 织物结构对PBT/PET复合纤维收缩性的影响[J]. 纺织学报, 2005, 26(1): 54 -55 .
[9] 吕柏祥;孙冰俏. 一些影响纤维静电因素的测定[J]. 纺织学报, 1984, 5(09): 5 -10 .
[10] 杨锁廷;刘建中;姚金波;王晓红;张淑洁. 羊毛拉伸细化加工设备和工艺的研究[J]. 纺织学报, 2003, 24(06): 61 -63 .