纺织学报 ›› 2016, Vol. 37 ›› Issue (07): 149-154.

• 管理与信息化 • 上一篇    下一篇

应用混合种群遗传神经网络的精梳毛纺工艺参数反演模型

  

  • 收稿日期:2015-04-08 修回日期:2016-01-07 出版日期:2016-07-15 发布日期:2016-07-15

Worsted spinning process parameters inversion model using mixed population genetic neural network

  • Received:2015-04-08 Revised:2016-01-07 Online:2016-07-15 Published:2016-07-15

摘要:

针对传统精梳毛纺工艺参数反演模型收敛性和稳定性不理想、泛化性能差、反演精度低等问题,以及标准遗传算法(SGA)应用于复杂优化问题时存在早熟收敛等缺点,以BP神经网络为基础,提出一种混合种群遗传人工神经网络(MPG-ANN)反演模型,首先以混合种群遗传算法优化BP神经网络的权值与阈值来建立预测模型,在此基础上根据毛纱CV值建立混合种群遗传算法反演模型,用来反演精梳毛纺生产过程工艺参数.以纺纱车间大量现场工艺检测数据为对象,并以工艺参数毛条含油量及细纱牵伸倍数进行反演验证,结果表明MPG-ANN模型反演精度达97%,相比于标准遗传算法人工神经网络(SGA-ANN)模型提高4%,同时反演结果波动幅度相比于SGA-ANN模型降低了6.28%.该方法可为精梳毛纺生产过程质量控制提供有效的理论指导,对纺织企业新产品工艺开发设计的快速决策具有很好的借鉴作用。

关键词: 精梳毛纺工艺, 遗传算法, 混合种群遗传人工神经网络, 工艺参数反演

Abstract:

Inversion model of traditional worsted spinning process parameters is defective because of unsatisfactory convergence and stability, poor generalization performance and low inversion accuracy. Besides, standard genetic algorithm (SGA) shows premature convergence in the application of complicated optimization problem. Therefore, the paper put forward an inversion model of mixed population genetic-artificial neural network (MPG-ANN) on the basis of BP neural network. First of all, the author established the prediction model by optimizing the weights and threshold of BP neural network through mixed population genetic algorithm. On this basis, the author created the inversion model of mixed population genetic algorithm according to the CV value of yarn and used it for the inversion of process parameters during worsted spinning production. Next, by taking lots of test data of field process in spinning workshops as the object, the author conducted inversion verification with the wool top oil content and spinning draft multiple of process parameters. The results show that the inversion accuracy of MPG-ANN model reaches 97% and increases by 4% relatively to SGA-ANN model. In addition, the fluctuating margin of the inversion results of MPG-ANN model reduces by 6.28% at most relatively to SGA-ANN model. Finally, the author predicted the CV value of yarn on the basis of inversion results. The average prediction accuracy increases by 4.25% relatively to SGA-ANN model, showing MPG-ANN model is superior to SGA-ANN model in terms of generalization performance.

[1] 宋楚平 李少芹. 应用改进遗传算法的自动配棉模型优化与应用[J]. 纺织学报, 2016, 37(09): 151-155.
[2] 谷有众 高卫东 卢雨正 刘建立 杨瑞华. 应用遗传算法优化支持向量回归机的喷气涡流纺纱线质量预测[J]. 纺织学报, 2016, 37(07): 142-148.
[3] 姚桂国;钟小勇;梁金祥;左保齐. 基于遗传算法的织物疵点特征选择[J]. 纺织学报, 2009, 30(12): 41-44.
[4] 刘 贵;于伟东. 基于遗传算法和BP网络的精毛纺粗纱质量预报[J]. 纺织学报, 2009, 30(05): 28-33.
[5] 陈建能;赵雄;张国凤;赵匀. 基于改进NSGA-Π算法的新型引纬机构的参数优化[J]. 纺织学报, 2008, 29(1): 110-113.
[6] 孙颖;李嘉禄;亢一澜;陈利. 三维四向编织复合材料刚度的细观力学设计[J]. 纺织学报, 2007, 28(5): 70-73.
[7] 孙颖;李嘉禄;陈利. 三维多向编织复合材料纤维束细观结构拓扑优化[J]. 纺织学报, 2007, 28(10): 45-48.
[8] 楼亚芳;张祖芳. 基于虚拟仿真的服装缝制流水线优化[J]. 纺织学报, 2006, 27(6): 55-57.
[9] 王东云;刘惠琴. 基于遗传算法的铺布与裁剪过程的优化调度[J]. 纺织学报, 2005, 26(5): 111-113.
[10] 阮奇;李玲;王勇;叶长燊;黄诗煌. 并流多效蒸发淡碱浓缩工艺优化设计研究[J]. 纺织学报, 2004, 25(06): 49-52.
[11] 朱龙彪;庄健;徐海黎. 高性能摆丝机械的改造设计[J]. 纺织学报, 2004, 25(04): 87-88.
[12] 王东云;刘惠琴;胡洛燕;凌德麟. 基于遗传算法服装缝纫调度技术的研究[J]. 纺织学报, 2003, 24(05): 52-53.
[13] 赵其明;贾立霞;刘君妹;张威. 基于遗传算法的织机变换齿轮组合优化[J]. 纺织学报, 2003, 24(04): 87-88.
[14] 竺志超;李志祥. 引纬机构的遗传算法优化设计[J]. 纺织学报, 2002, 23(03): 34-35.
[15] 竺志超. 基于遗传算法的卷绕成形机构设计[J]. 纺织学报, 2001, 22(04): 9-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!