纺织学报 ›› 2016, Vol. 37 ›› Issue (08): 160-164.

• 综合述评 • 上一篇    下一篇

摩擦对平纹织物防弹性能影响的研究进展

  

  • 收稿日期:2015-05-19 修回日期:2016-04-12 出版日期:2016-08-15 发布日期:2016-08-05

Research progress on influence of friction on ballistic performance of flexible materials

  • Received:2015-05-19 Revised:2016-04-12 Online:2016-08-15 Published:2016-08-05

摘要:

在明确柔性材料防弹原理的基础上,从有限元建模分析和弹道测试2个方面,对弹丸与试样间摩擦、纱线与纱线间摩擦作用的运行机制进行了概述,分析了摩擦在弹丸能量吸收过程中起到的直接与间接作用,并且总结了提高摩擦性能的常用手法。研究发现:提升弹丸与材料之间的摩擦有利于材料应变能和动能的吸收,提升纱线间的摩擦有利于防止纱线滑移和扩大能量吸收区域的面积;纤维表面改性技术可使纤维间摩擦性能得到显著的提升,但很难满足产业化的需要;将纱罗组织与平纹组织相结合,可增大纬纱的摩擦包角,提升其纬向握持力。相比于表面改性过的纤维材料,纱罗/平纹复合组织能够在全自动织机上制备,可解决批量生产、人力成本过高等技术难题。

关键词: 能量吸收, 平纹织物, 纱线间摩擦, 纤维表面改性, 结构组织变化

Abstract:

Based on the understanding of the response of flexible materials upon ballistic impact, by finite element analysis and ballistic test, this paper reviews the working mechanisms of projectile-material and yarn-yarn friction in ballistic protection, investigates the direct and indirect influence of friction on projectile energy absorption, and summarizes the common approaches for frictional increase. It gas been found that increasing the projectile-material friction leads to an increase in material kinetic and strainenergy absorption, and increasing yarn-yarn friction avoids yarn slippate and enlarges the energy absorption area; it has also been claimed that, although an increase in friction could be obtained using fiber-surface-modification -based technology, treated fabric is difficult to massively profuce; and incorporation of leno structure into plain weave increases the wraping angle of the weft yarns, leading to an improvement on yarn gripping. In addition, structure-modification-based-technology could be achieved on the power loom, solving the problems of mass production and overhigh labor cost.

Key words: energy absorption, plain weave, yarn-yarn friction, fiber surface modification, structure modification

[1] 常玉萍 马丕波. 负泊松比经编间隔织物的准静态拉伸性能[J]. 纺织学报, 2018, 39(04): 47-53.
[2] 周熠 陈晓钢 张尚勇 龚小舟. 超高分子量聚乙烯平纹织物在柔性防弹服中的应用[J]. 纺织学报, 2016, 37(4): 60-0.
[3] 张香俊 郑天勇 陈子晗. 中低密度机织平纹织物中纱线压扁变化规律[J]. 纺织学报, 2013, 34(12): 50-0.
[4] 左中鹅;王瑞;徐磊. 基于有限单元法的平纹织物复合材料强度预测:2.复合材料层合板拉伸过程的有限元分析[J]. 纺织学报, 2010, 31(1): 64-67.
[5] 左中鹅;王瑞;徐磊. 基于有限单元法的平纹织物复合材料强度预测:1. RVE的有限元模型[J]. 纺织学报, 2009, 30(12): 45-49.
[6] 曹海建;钱坤;魏取福;李鸿顺. 三维整体中空复合材料低速冲击性能[J]. 纺织学报, 2009, 30(10): 70-74.
[7] 练军;顾伯洪;王善元. 织物及其复合材料的弹道冲击性能[J]. 纺织学报, 2006, 27(8): 109-112.
[8] 傅菊芬;白伦. 织物缩水机理及其数学模型的研究与应用[J]. 纺织学报, 2006, 27(4): 31-35.
[9] 魏铭森. 棉包芯摩擦纱织物性能的试验和分析[J]. 纺织学报, 2004, 25(01): 70-71.
[10] 谭 磊;胡心怡. 纬编针织物方向与弹性及刚柔性的关系[J]. 纺织学报, 2002, 23(01): 51-52.
[11] 张莉;顾伯洪. 平纹织物泊松比的测定及计算[J]. 纺织学报, 1998, 19(05): 15-17.
[12] 郭兴峰;黄故;马崇启;林国才. 机织物结构及其极限密度的研究[J]. 纺织学报, 1998, 19(05): 21-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!