纺织学报 ›› 2016, Vol. 37 ›› Issue (09): 70-77.

• 纺织工程 • 上一篇    下一篇

二维机织复合材料力学分析中的周期性边界条件研究

  

  • 收稿日期:2015-08-05 修回日期:2016-03-18 出版日期:2016-09-15 发布日期:2016-09-19

Periodic boundary conditions for mechanical property analysis of 2-D woven fabric composite

  • Received:2015-08-05 Revised:2016-03-18 Online:2016-09-15 Published:2016-09-19

摘要:

为了精确地进行二维机织复合材料力学性能的数值分析,需建立单胞模型的准确边界条件。基于周期边界条件理论,提出了简便通用的二维机织复合材料周期边界方程,并给出了周期边界条件下各弹性常数在有限元分析中的求解方法;为验证周期边界条件的正确性,建立了9 个单胞构成的九宫格结构,取中央单胞作为参考单胞,对不同边界条件下独立单胞的变形和应力分布与参考单胞进行对比。研究结果表明:即使在单向拉伸载荷下,单胞各个边界面也不保持平面状态,而是出现凹凸翘曲变形,即存在边界周期性;通过边界周期性条件,可正确地获得二维机织织物的工程弹性常数。

关键词: 二维机织复合材料, 周期边界条件, 单胞, 有限元模型, 弹性常数

Abstract:

In order to accurately implement the numerical analysis for the mechanical properties of two-dimensional (2-D) woven fabric composite, the accurate boundary condition of unit cell model should be established. Based on the periodic boundary condition theory, a set of simple and universal periodic boundary equations was proposed for the 2-D woven fabric composite, and the solving method of elastic constants for engineering in the finite element analysis under the periodic boundary conditions was given. In order to verify the correctness of periodic boundary conditions, the nine-block-box structure including 9 unite cells of 2-D fabric composite were established. Taking the central cell as the reference cell, the deformation and stress distribution of the single cells under different boundary conditions were compared with the reference cell. The results indicate that all boundary surfaces of the fabric composite do not keep planar state, but present the concave and convex buckling deformation under uniaxial tensile load. In other words, the periodic property of the unite cell boundary faces is demonstrated. Furthermore, the engineering constants of the 2D woven fabric composite can be obtained properly under the periodic boundary conditions.

Key words: 2-D woven fabric composite, periodic boundary condition, rnit cell, finite element model, elastic constant

[1] 韩晨晨 程隆棣 高卫东 薛元 杨瑞华. 基于有限元模型的喷气涡流纺纤维运动轨迹模拟[J]. 纺织学报, 2018, 39(02): 32-37.
[2] 李瑛慧 谢春萍 刘新金. 三原组织织物拉伸力学性能有限元仿真[J]. 纺织学报, 2017, 38(11): 41-47.
[3] 卢子兴 周原 陈明阳 夏彪. 用于缎纹机织复合材料力学行为数值模拟的新单胞模型[J]. 纺织学报, 2014, 35(5): 40-0.
[4] 郑磊, 丁若垚, 郁崇文. 脱胶细菌在亚麻粗纱煮练中的初步应用[J]. 纺织学报, 2012, 33(8): 66-70.
[5] 缪旭红 孔祥勇. 经编间隔织物防刺行为的数值模拟[J]. 纺织学报, 2012, 33(12): 112-117.
[6] 冯驰;吴晓青. 参数化单胞计算三维编织预制件纤维体积含量[J]. 纺织学报, 2007, 28(6): 63-65.
[7] 王春敏. 纤维束本构方程的研究[J]. 纺织学报, 2006, 27(3): 1-3.
[8] 钱微君;陈海敏;陈建勇;冯新星;应飞祥. 大麻韧皮果胶分解菌株的分离与鉴定[J]. 纺织学报, 2006, 27(11): 52-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!