纺织学报 ›› 2016, Vol. 37 ›› Issue (10): 83-88.

• 染整与化学品 • 上一篇    下一篇

含氟聚氨酯/聚氨酯纳米纤维膜复合织物的制备及其防水透湿性能

  

  • 收稿日期:2015-09-16 修回日期:2016-06-07 出版日期:2016-10-15 发布日期:2016-10-31

Preparation and waterproof and water-permeable properties of electrospun fluorinated polyurethanel polyurethane

  • Received:2015-09-16 Revised:2016-06-07 Online:2016-10-15 Published:2016-10-31

摘要:

为获得良好防水性能且保持服装穿着的舒适性,通过构建具有低表面能和粗糙表面于一体的含氟聚氨酯/聚氨酯纳米纤维膜,以涤/棉斜纹机织物作为静电纺丝接收基布,制备了一种新型防水透湿织物。探讨了含氟聚氨酯疏水剂的质量分数对纳米纤维结构及复合织物的防水透湿和力学性能的影响。结果表明,当含氟聚氨酯疏水剂质量分数为100%时,复合织物性能最佳,其静态接触角为141°,透湿率达到3 958 g/(m² • 24 h),,沾水等级为5 级透气率达到34.06 mm/s。力学性能测试结果表明,复合织物的力学性能随疏水剂质量分数的提高而逐渐增强,当 FPU 质量分数为1.00% 时,顶破强力、撕裂强力和拉伸强力分别增加了5.93%、30.79%和5.48%。

关键词: 防水透湿, 静电纺丝, 复合织物, 含氟聚氨酯/聚氨酯纳米纤维膜

Abstract:

In order to obtain a high waterproofness clothing with good permeability, the paper reported a novel waterproof and water permeable fabric, the electrospun nanofibrous membranes was prepared by electrospinning, which possessed low surface free energy and rough surface, and then a polyester-cotton woven fabric with twill was used as a substrate for the nanofibrous membranes. The effects of concentration of fouorinated polyurethane (FPU) on morphological structure of nanofibers, water proof, vapor permission and mechanical properties of the electrospun nanofibrous membranes composite fabrics were studied. The results indicated that the optimum concentration of FPU for the electrospun nanofibrous membranes composite fabrics were 1.00%, meantime, the composite fabrics were endowed with the water contact angle of 141 °, the water vapor transmission rate achieves to 3 958 g/(m² • 24 h), and the spray grade can reach up to 5 , whilst the air permeability amount to 34.06 mm/s. The mechanical properties test showed that the mechanical properties gradually increased with the increase of FPU amount, when the concentration of FPU is 1.00%, and the value of bursting strength, tearing strength and tensile strength were enhanced by about 5.93%,30.79% and 5.48%, respectively.

Key words: waterproof and water permeable, electrospinning, composite fabric, fluorinated polyruethane/polyurethane nanofiber membrane

参考文献 [1] 高党鸽, 张文博, 马建中. 防水透湿织物的研究进展[J]. 印染, 2011, 37(21): 45-50. GAO Dangge, ZHANG Wenbo, MA Jianzhong. Research and development of moisture-management fabric[J]. Dyeing and Finishing, 2011, 37(21): 45-50. [2] 刘延波, 马营, 孙健, 等. 电纺 PVDF/PVDF-HFP 复合纳米纤维膜及其防水透湿性能评价[J]. 天津工业大学学报, 2014, 33(6): 6-10. LIU Yanbo, MA Ying, SUN Jian. Composite nanofiber membrane based on electrospun PVDF/PVDF-HFP and evaluation for waterproof & breathable properties[J]. Journal of Tianjin Polytechnic University, 2014, 33(6): 6-10. [3] 陈丽华. 不同种类防水透湿织物的性能及发展[J]. 纺织学报, 2012, 33(7): 149-156. CHEN Lihua. Properties and development trends of different kinds of waterproof and moisture permeable fabrics[J]. Journal of Textile Research, 2012, 33(7): 149-156. [4] Hong K A, Yoo H S, Kim E. Effect of waterborne polyurethane coating on the durability and breathable waterproofing of electrospun nanofiber web-laminated fabrics[J]. Textile Research Journal, 2015, 85(2): 160-170. [5] Yoon B, Lee S. Designing waterproof breathable materials based on electrospun nanofibers and assessing the performance characteristics[J]. Fibers and Polymers, 2011, 12(1): 57-64. [6] Wang J, Li Y, Tian H, et al. Waterproof and breathable membranes of waterborne fluorinated polyurethane modified electrospun polyacrylonitrile fibers[J]. RSC Advances, 2014, 4(105): 61068-61076. [7] Hong S K, Lim G, Cho S J. Breathability Enhancement of Electrospun Microfibrous Polyurethane Membranes through Pore Size Control for Outdoor Sportswear Fabric[J]. Sensors and Materials, 2015, 27(1): 77-85. [8] 周颖 姚理荣 高强. 聚氨酯/聚偏氟乙烯共混膜防水透气织物的制备及其性能[J]. 纺织学报, 2014, 35(5): 23-0. ZHOU Ying, YAO Lirong, GAO Qiang. Preparation and characterization of polyurethane/polyvinylidene fluoride waterproof permeable composite fabric[J]. Journal of Textile Research. 2014, 35(5): 23-0. [9] Li Y, Zhu Z, Yu J, et al. Carbon Nanotubes Enhanced Fluorinated Polyurethane Macroporous Membranes for Waterproof and Breathable Application[J]. ACS applied materials & interfaces, 2015, 7(24): 13538-13546. [10] Wang J, Raza A, Si Y, et al. Synthesis of superamphiphobic breathable membranes utilizing SiO 2 nanoparticles decorated fluorinated polyurethane nanofibers[J]. Nanoscale, 2012, 4(23): 7549-7556.

[1] 吴小娟 余妙晶 舒慧 郑怡筱 葛烨倩 . 过温保护层合纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 21-26.
[2] 陈洪立 焦晓宁 柯鹏. 取向增强复合锂离子电池隔膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 8-14.
[3] 张博亚 李佳慧 张如全 李建强. 静电纺聚丙烯腈/硫酸铜纳米纤维膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 15-20.
[4] 王航 庄旭品 董锋 石磊 康卫民 徐先林 程博闻. 溶液喷射纺纳米纤维制备技术及其应用进展[J]. 纺织学报, 2018, 39(07): 165-173.
[5] 王迎 杨云 魏春艳 宋欢 季英超 孙玉雍 张欣. 沉积静电纺聚丙烯腈纳米纤维膜窗纱的制备及其性能[J]. 纺织学报, 2018, 39(04): 14-18.
[6] 靳世鑫 辛斌杰 郑元生. 静电纺丝法宏量制备纳米纤维的研究进展[J]. 纺织学报, 2018, 39(03): 175-180.
[7] 刘雷艮 林振锋 沈忠安 牛建涛. 静电纺多孔超细纤维膜的吸油性能[J]. 纺织学报, 2018, 39(02): 7-13.
[8] 蒋洁 陈胜 李静静 付润芳 林义 顾迎春. 静电纺钛酸钡/聚偏氟乙烯纳米复合柔性压电纤维膜[J]. 纺织学报, 2018, 39(02): 14-19.
[9] 李静静 卢辉 蒋洁 张思航 顾迎春 陈胜. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018, 39(02): 1-6.
[10] 李孟轩 王瑞 刘星 杨华 丁艳然. 老颧草微胶囊复合织物的制备及其药物释放机制[J]. 纺织学报, 2018, 39(02): 138-143.
[11] 王永鹏 刘梦竹 路大勇. 用静电纺丝法制备可交联高性能聚合物纳米纤维[J]. 纺织学报, 2018, 39(01): 6-10.
[12] 李树锋 刘高华 谢小军 韩永兴 张艳 程博闻. 同轴静电纺丝参数对聚丙烯腈中空碳纳米纤维形态与炭化收率的影响[J]. 纺织学报, 2017, 38(12): 1-6.
[13] 康卫民 范兰兰 邓南平 何宏升 鞠敬鸽 程博闻 . 静电纺多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017, 38(11): 168-176.
[14] 李智勇 邵一卿 孙窈 张亮 夏鑫. 含氟聚氨酯的合成及其静电纺膜复合织物的防酸透湿性能[J]. 纺织学报, 2017, 38(10): 7-12.
[15] 王闻宇 朱承章 张琼之 金欣 肖长发 林童 朱正涛. 二甲基亚砜/水溶液体系中氢键对静电纺淀粉纤维的影响[J]. 纺织学报, 2017, 38(09): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!