纺织学报 ›› 2016, Vol. 37 ›› Issue (12): 6-11.

• 纤维材料 • 上一篇    下一篇

乙烯-四氟乙烯共聚纤维的性能

  

  • 收稿日期:2016-01-20 修回日期:2016-09-05 出版日期:2016-12-15 发布日期:2016-12-21

Proerties of ethylene-tetrafluoroethylene copolymer fibers

  • Received:2016-01-20 Revised:2016-09-05 Online:2016-12-15 Published:2016-12-21

摘要:

为实现乙烯-四氟乙烯(ETFE)共聚纤维工业规模开发,通过熔融纺丝法制备了ETFE共聚初生纤维,并将初生纤维在150 ℃条件下通过电子拉伸试验机进行定长拉伸,得到拉伸比为100%和200%的纤维。利用热重分析仪、差示扫描量热分析仪、X射线衍射仪、动态热机械分析仪和电子拉伸机等分别测试了纤维的热性能、结晶结构、力学性能。测试得出:ETFE共聚热分解温度约为477℃;不同拉伸倍率纤维的熔融温度均保持在259℃左右;拉伸200%纤维断裂强度约为160MPa,是初生纤维的3倍。结果表明:随拉伸倍率的提高,ETFE共聚纤维玻璃化转变温度提高9℃,结晶度和晶区取向度分别提高了10.2% 和 5.5%;经浓硫酸、氢氧化钠溶液、丙酮和次氯酸钠试剂处理后各纤维断裂强度均无明显变化,表现出良好的耐化学试剂性能。

关键词: 乙烯四氟乙烯共聚物, 熔融纺丝成形, 拉伸比, 纤维结构, 纤维性能

Abstract:

In order to achieve the development of industrial scale of ethylene-tetrafluoroethylene (ETFE) copolymer fibers, ETFEcopolymer as-spun fibers were prepared by spinning, and  were stretched by and electronic tensile machine at 150 °C to obtain fibers with the stretch artio of 100% and 200%, respectively. Thermal properties, crystal structure and mechanical properties of fibers were researched by thermogravimetric analyzer (TG), differential scanning calorimeter (DSC), X-ray diffractometer (XRD) , dynamic mechanical analyzer (DMA) and electronic tensile testing machine, respectively. The results show that the thermal decomposition temperature of ETFE copolymer is about 477℃. The melting temperatures of fibers of different draw ratio are all about 259°C. The breaking strength of fibers stretched by 200% is 160 MPa, which is close to three times of as-spun fibers. The DMA and XRD indicate that with the increasing of the stretch ratios, glass transition temperature of ETFE copolymer fibers is increased by 9℃. In the meantime, the crystallinity improved by 10.2% and 5.5% respectively. Besides, the breaking strength of all kinds of fibers has no obvious change after treating with H2SO4, acetone and NaClO, which shows the eexcellent resistance to chemical reagents.

Key words: ethylene-tetrafouoroethylene copolymer, melt-spinning, stretch ratio, fiber structure, fiber property

[1] 孙乐乐 肖长发 赵健 赵凯常. 乙烯-四氟乙烯共聚物织物的制备及其性能[J]. 纺织学报, 2017, 38(05): 43-48.
[2] 刘婵 谢春萍 刘新金 杨艳春 李蔚. 亚铁离子质量浓度对黑牦牛绒纤维脱色的影响[J]. 纺织学报, 2016, 37(4): 21-0.
[3] 何建良 沈恒根 邓召良 毕景中 任仲恺 吕继平. 间位芳香族聚酰胺三元共聚纤维的制备与性能[J]. 纺织学报, 2015, 36(12): 11-0.
[4] 李蔚 刘新金 徐伯俊 魏取福. 牦牛绒与骆驼绒及羊绒的物理性能对比[J]. 纺织学报, 2015, 36(08): 1-5.
[5] 盛冠忠 蒋少军 钟少锋 楼永平 张奇鹏. 棉秆皮机械-生物酶联合脱胶工艺[J]. 纺织学报, 2013, 34(2): 95-100.
[6] 杜兆芳, 黄芙蓉. 苎麻复合微生物脱胶工艺优化[J]. 纺织学报, 2012, 33(5): 56-61.
[7] 杨革生;邵惠丽;胡学超. 纺丝条件对基于Lyocell工艺加工的竹浆纤维结构与性能的影响[J]. 纺织学报, 2011, 32(1): 6-10.
[8] 张华;张建春. 闪爆处理对大麻纤维的影响[J]. 纺织学报, 2007, 28(10): 12-14.
[9] 陈莉;张健飞. 果胶酶处理对天然彩色棉纤维性能和结构的影响[J]. 纺织学报, 2007, 28(10): 23-25.
[10] 朱正锋. 超细中长大豆蛋白纤维性能及其混纺产品风格[J]. 纺织学报, 2006, 27(2): 84-86.
[11] 钟安华;谭远友;王成国;黄翠蓉;邹桦. 苎麻生长期对纤维结构及品质的影响[J]. 纺织学报, 2005, 26(5): 20-22.
[12] 周岚;邵建中;郑今欢;汪丽娜. 各茧层桑蚕丝纤维的结构和性能特点[J]. 纺织学报, 2005, 26(2): 21-23.
[13] 王晓红;杨锁廷;姚金波;刘建中;张淑洁. 拉伸细化羊毛纤维的性能研究[J]. 纺织学报, 2005, 26(1): 39-41.
[14] 秦益民. 海藻酸医用敷料吸湿机理分析[J]. 纺织学报, 2005, 26(1): 113-115.
[15] 万玉芹;崔运花;俞建勇. 竹纤维的开发与技术应用[J]. 纺织学报, 2004, 25(06): 127-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!