纺织学报 ›› 2017, Vol. 38 ›› Issue (02): 34-39.doi: 10.13475/j.fzxb.20161003506

• 纤维材料 • 上一篇    下一篇

聚丙烯腈纳米纤维束的预氧化过程

  

  • 收稿日期:2016-10-14 修回日期:2016-11-12 出版日期:2017-02-15 发布日期:2017-02-27

Pre-oxidation process of polyacrylonitrile nanofiber bundles

  • Received:2016-10-14 Revised:2016-11-12 Online:2017-02-15 Published:2017-02-27

摘要:

为给高性能碳纳米纤维的预氧化制备过程提供数据参考,通过多针静电纺的方法制备具有高取向的聚丙烯腈(PAN)纳米纤维束。通过研究纳米纤维结构,探讨了预氧化温度及时间对纳米纤维的结构和性能的影响。结果表明:整个纺丝过程可以持续5h以上,纳米纤维的直径在218nm左右,同时其沿纤维束轴向的取向度达到76.52%。纳米纤维的横截面成典型的外层致密内层松软的皮芯结构。随预氧化温度或者时间的增加,脱氢、环化以及氧化反应程度提高;随温度的提高,纳米纤维的结晶度先增加后减小,其最大结晶度达到54.57%。红外光谱、X射线衍射曲线以及芳构化指数表明:预氧化温度在260℃到280℃、时间1~2h之间较为合适。

关键词: 多针静电纺, 纳米纤维束, 聚丙烯腈, 预氧化

Abstract:

The process of pre-oxidation provides the reference for manufacturing of carbon nanofibers with high-performance. The polyacrylonitrile (PAN) nanofiber bundle with high alignment was fabricated by a multi-needle electrospinning process. The structure of nanofibers was investigated, and the influence of pre-oxidation temperature and time on the structures and properties of nanofibers were also discussed. The results indicate that the process of electrospinning could be continuously carried out for more than five hours, and the diameter of nanofibers was about 218 nm, meanwhile, the alignment degree of nanofibers along with the axis of bundle was as far as 76.52%. The cross section of nanofibers was a typical core-shell structure with a tight coating and soft core structure. With the increase of pre-oxidation temperature or time, the degree of dehydrogenation, cyclization and oxidation reactions improved. The degree of crystallinity of pre-oxidation nanofibers first increased, and then decreased with the increase of temperature, and the maximum value was 54.57%. The suitable pre-oxidation temperature was between 260℃ and 280℃ and the time was 1~2h, confirmed by the results of infrared spectroscopy, X-ray diffraction and aromatization index.

Key words: multi-needle electrospinning, nanofiber bundle, polyacrylonitrile, pre-oxidation

[1] 吴小娟 余妙晶 舒慧 郑怡筱 葛烨倩 . 过温保护层合纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 21-26.
[2] 张博亚 李佳慧 张如全 李建强. 静电纺聚丙烯腈/硫酸铜纳米纤维膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 15-20.
[3] 王迎 杨云 魏春艳 宋欢 季英超 孙玉雍 张欣. 沉积静电纺聚丙烯腈纳米纤维膜窗纱的制备及其性能[J]. 纺织学报, 2018, 39(04): 14-18.
[4] 于宾 赵晓明 漆东岳. 腈纶预氧化丝/芳纶针刺滤材的性能[J]. 纺织学报, 2018, 39(03): 61-66.
[5] 李树锋 刘高华 谢小军 韩永兴 张艳 程博闻. 同轴静电纺丝参数对聚丙烯腈中空碳纳米纤维形态与炭化收率的影响[J]. 纺织学报, 2017, 38(12): 1-6.
[6] 李晴碧 刘琴 顾迎春 彭旭 李静静 蒋洁 陈胜. 复合静电纺超细聚丙烯腈纳米纤维的制备[J]. 纺织学报, 2017, 38(11): 16-21.
[7] 贾琳 王西贤 张海霞 覃小红. 防紫外线聚丙烯腈复合纳米纤维的制备及其性能[J]. 纺织学报, 2017, 38(10): 1-6.
[8] 陈锋 姬忠礼 齐强强. 静电纺聚丙烯腈纳米纤维复合滤材的制备及其气液过滤性能[J]. 纺织学报, 2017, 38(09): 8-13.
[9] 普丹丹 王瑞 董余兵 朱曜峰 傅雅琴. 表面改性处理对涤纶织物/聚氯乙烯复合材料界面性能的影响[J]. 纺织学报, 2017, 38(08): 102-107.
[10] 任元林 张悦 谷叶童 曾倩. 含磷阻燃聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2017, 38(08): 1-5.
[11] 贾琳 王西贤 张海霞 覃小红. 聚丙烯腈/二氧化钛纳米纤维的紫外线防护性能[J]. 纺织学报, 2017, 38(07): 18-22.
[12] 李甫 董永春 程博闻 康卫民. 改性聚丙烯腈纤维与金属离子的配位反应及其应用进展[J]. 纺织学报, 2017, 38(06): 143-150.
[13] 冯雪 汪滨 王娇娜 李从举. 空气过滤用聚丙烯腈静电纺纤维膜的制备及其性能[J]. 纺织学报, 2017, 38(04): 6-11.
[14] 余改丽 张弘楠 张娇娇 左晓飞 覃小红. 高效低阻聚丙烯腈/石墨烯纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2017, 38(02): 26-33.
[15] 海滇 李树锋 丁晓 韩永兴 邓飞燕 张艳 程博闻. 高分子质量聚丙烯腈基碳纳米纤维的制备[J]. 纺织学报, 2016, 37(3): 1-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!