纺织学报 ›› 2017, Vol. 38 ›› Issue (04): 145-150.doi: 10.13475/j.fzxb.20160404106

• 管理与信息化 • 上一篇    下一篇

采用图像处理的织物缝纫平整度自动评估

  

  • 收稿日期:2016-04-14 修回日期:2016-10-19 出版日期:2017-04-15 发布日期:2017-04-17

Automatic seam-puckering evaluation using image processing

  • Received:2016-04-14 Revised:2016-10-19 Online:2017-04-15 Published:2017-04-17

摘要:

为解决织物缝纫平整度客观自动评估时分类正确率低的问题,提出了一种基于灰度共生矩阵、小波分析和反向传播(BP)神经网络相结合的织物缝纫平整度的自动评估方法。首先采集标准缝纫图像,将图像的灰度级降至16 级,计算图像在0°和90°方向上的灰度共生矩阵并将其归一化,提取灰度共生矩阵的能量、熵、对比度和相关性4 个特征参数,并分别对特征参数在0°和90°方向上取均值;同时,运用Haar 小波在第6个分析尺度上提取并计算图像的水平细节系数的标准差。然后将提取的这5 个特征参数输入到BP 神经网络中训练和识别,并对标准缝纫图像进行了评估。评估结果显示:提出的算法与单独采用灰度共生矩阵特征、小波特征相比,具有较高的分类正确率,分类效果稳定。

关键词: 缝纫平整度, 灰度共生矩阵, 小波分析, BP神经网络

Abstract:

In order to solve the problem of low-accuracy classification in objective automatic evaluation of seam-puckering, a novel method based on gray level co-occurrence matrix, wavelet analysis and back propagation (BP) network was proposed for automatic seam-puckering evaluation. Firstly, a standard seam image was captured and the gray level of the seam image was reduced to 16 level, the gray level co-occurrence matrix, and the mean values of the characteristic parameters were obtained in the direction of 0° and 90°, respectively. Meanwhile, the standard deviation of the horizontal detail coefficients of the seam image was extracted and calculated by using Haar wavelet of the sixth anslysis scales. After that, five extracted characteristic parameters were input to the BP neural network for training and recognizing, and the standerd seam image was exaluated. The evaluation results show that the proposed algorithm, compared with one adopting gray level co-occurrence matrix characteristic or wavelet characteristic alone, has higher correct classification rate and stable classification effect.

Key words: seam-puckering, gray level co-occurrence matrix, wavelet analysis, BP network

[1] 陈丽丽. 精纺毛织物缝纫平整度客观评价方法[J]. 纺织学报, 2018, 39(03): 120-125.
[2] 刘成霞 刘婷. 应用小波分析的服装关节部位抗皱性评价[J]. 纺织学报, 2016, 37(12): 87-91.
[3] 厉征鑫 周建 潘如如 刘建立 高卫东. 应用单演小波分析的织物疵点检测[J]. 纺织学报, 2016, 37(09): 59-64.
[4] 夏明 陈益松 张文斌. 基于椭圆傅里叶的人体胸围断面形状研究[J]. 纺织学报, 2014, 35(7): 107-0.
[5] 杨梦星 张毅 郑秋婷. BP神经网络预测环境对丝织物力学性能的影响[J]. 纺织学报, 2013, 34(8): 39-0.
[6] 张海波 黄铁军 修毅 赵野军 章江华. 基于神经网络的男西装图像情感语义识别[J]. 纺织学报, 2013, 34(12): 138-0.
[7] 张江丰 樊臻 张森林. 基于核模糊聚类的机织物组织自动识别[J]. 纺织学报, 2013, 34(12): 131-0.
[8] 黄成 王晓 任春明 王辉 刘燕 刘凯. 亚麻织物接枝率与透气率变化关系的数学模型[J]. 纺织学报, 2013, 34(1): 90-95.
[9] 林君焕 张国庆 张树有. 缝纫机缝纫性能测量评价系统的设计[J]. 纺织学报, 2013, 34(1): 116-121.
[10] 狄宏静 刘冬云 吴志明. 基于BP神经网络的春夏女装流行色预测[J]. 纺织学报, 2011, 32(7): 111-116.
[11] 李翔;彭志勤;金凤英;顾宗栋;薛元;胡国樑. 基于神经网络的精纺毛纱性能预测模型比较[J]. 纺织学报, 2011, 32(3): 51-56.
[12] 徐展鹏, 孙云云, 刘涵, 郭吉丰. 基于神经网络算法的工缝机节能电动机控制系统的设计[J]. 纺织学报, 2011, 32(12): 128-133.
[13] 吴雄华;刘亚;. 基于BP神经网络的熔喷非织造布工艺参数优化[J]. 纺织学报, 2011, 32(1): 51-54.
[14] 郑春玲. 改进的LM-BP算法预测活性染料染色K/S值[J]. 纺织学报, 2010, 31(8): 82-85.
[15] 万振凯;王占刚. 基于神经网络的复合材料缺陷超声波检测研究[J]. 纺织学报, 2010, 31(2): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!