纺织学报 ›› 2017, Vol. 38 ›› Issue (05): 122-127.doi: 10.13475/j.fzxb.20160504706

• 服装工程 • 上一篇    下一篇

采用傅里叶描述子和支持向量机的服装款式识别方法

  

  • 收稿日期:2016-05-19 修回日期:2017-01-21 出版日期:2017-05-15 发布日期:2017-05-16

Clothing style recognition approach using Fourier descriptors and support vector machines

  • Received:2016-05-19 Revised:2017-01-21 Online:2017-05-15 Published:2017-05-16

摘要:

为解决当前服装款式识别领域中,服装轮廓特征提取技术较复杂,其分类方法的效率低、适应性差等问题,提出一种新型的服装款式的识别方法。首先创建了一个服装图像样本库,并从这些服装图像中提取服装轮廓,然后使用傅立叶描述子描述服装的轮廓特征,以多分类支持向量机进行分类。结果表明,该方法能够准确提取服装轮廓,傅立叶描述子的识别效果优于Hu不变矩和融合特征(Hu不变矩和傅立叶描述子);对傅立叶描述子进行主成分分析不能提高识别准确率;支持向量机的分类效果优于极端学习机;该方法能够达到95%以上的识别率,尤其对轮廓特征明显的款式有更好的识别率。

关键词: 服装款式识别, 傅里叶描述子, 支持向量机, Hu不变矩, 主成分分析, 极端学习机

Abstract:

In the current clothing style recognition field, clothing contour feature extraction technique was complicated, classification efficiency was low and adaptability was poor. In order to solve these problem and recognize the clothing styles, a novel approach was proposed. In this approach, the contours were extracted from the clothing images, which were taken from the newly created sample database. Then the contour features were described by Fourier descriptors(FD). Finally, the clothing styles were classified by multiclass support vector machines(SVM). The experimental results show that this novel approach can accurately extract the contours of clothing. The recognition effect of the Fourier descriptors is better than the Hu moment invariant and feature fusion (Hu moment invariant and Fourier descriptor). Principal component analysis of FD can’t improve the recognition accuracy, and the classification effect of SVM is better than ELM. This approach can achieve a recognition rate above 95%. In particular, contour features obvious style has a better recognition rate.

Key words: clothing style recognition, Fourier descriptor, support vector machine, Hu moment invariant, principal component analysis, extreme learning machine

[1] 李佳平 沈国康 欧耀明 孟想 辛斌杰. 应用连续投影算法及最小二乘支持向量机的单组分纺织品识别[J]. 纺织学报, 2018, 39(08): 46-51.
[2] 金关秀 张毅 楼永平 祝成炎. 应用粗糙集和支持向量机的熔喷非织造布过滤性能预测[J]. 纺织学报, 2018, 39(06): 142-148.
[3] 张陆佳 林兰天 陈春敏 申炎仃 高琮. 基于主成分分析的纤维拉伸断裂声发射信号识别[J]. 纺织学报, 2018, 39(01): 19-24.
[4] 张建新 张银露 胡旭东. 光谱优化处理结合多层次支持向量机的混合染液浓度检测方法[J]. 纺织学报, 2017, 38(07): 90-94.
[5] 夏凤勤 毋戈 谢昊洋 钟跃崎. 基于人体纵截面特征曲线的体型分类[J]. 纺织学报, 2017, 38(06): 86-91.
[6] 万振凯 贡丽英 万莉. 基于损伤指数的三维编织复合材料结构损伤评估[J]. 纺织学报, 2017, 38(05): 69-74.
[7] 王玲 杨以雄 陈炜. 服装工序相似性标准工时预测[J]. 纺织学报, 2016, 37(11): 114-119.
[8] 陈孝之 谢莉青. 织物颜色配准到标准色卡的计算机识别与仿真[J]. 纺织学报, 2016, 37(05): 150-0.
[9] 苟捷 刘建立 高卫东. 应用主成分分析的原棉可纺性指数构建[J]. 纺织学报, 2015, 36(08): 16-21.
[10] 金关秀 应伟伟 雷新 从明芳 祝成炎. 纺粘非织造布孔隙形状的定量分析[J]. 纺织学报, 2015, 36(08): 56-61.
[11] 夏明 王文玲 张文斌. 人体特征断面形状拟合及围度尺寸预测[J]. 纺织学报, 2014, 35(8): 76-0.
[12] 钟智丽 王玉新. 聚丙烯长丝/芳纶包缠纱捻度的优化[J]. 纺织学报, 2014, 35(6): 40-0.
[13] 项明 姚雪存 崔振东 华铨平. 利用相关反馈技术和形状特征的服装图像检索算法[J]. 纺织学报, 2014, 35(2): 94-0.
[14] 应乐斌, 戴连奎, 吴俭俭, 孙国君. 基于纤维纵向显微图像的棉/亚麻单纤维识别[J]. 纺织学报, 2012, 33(4): 12-18.
[15] 艾解清 高济 彭艳斌. 基于离散粒子群算法的织物疵点特征选择[J]. 纺织学报, 2011, 32(11): 53-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!