纺织学报 ›› 2017, Vol. 38 ›› Issue (06): 28-32.

• 纺织工程 • 上一篇    下一篇

阻燃涤纶/芳纶/聚苯丙噁唑纤维三轴系复合纱的拉伸性能

  

  • 收稿日期:2016-06-30 修回日期:2017-01-06 出版日期:2017-06-15 发布日期:2017-06-16

Mechanical analysis of flame retardant three-strand yarn of polyester / aramid fiber / Poly(p-phenylene-2,6-benzo-bisoxazole) fiber

  • Received:2016-06-30 Revised:2017-01-06 Online:2017-06-15 Published:2017-06-16

摘要:

针对多组分纱线拉伸力学行为的理论模型描述不准确问题,以Vangheluwe模型为基础,对三轴系高性能复合纱的拉伸行为进行分析。Vangheluwe模型不适合描述准线形类纤维,对Vangheluwe模型在应变为零时弹簧模量为零的缺点作修正,得到修正模型。同时,结合Jacobian矩阵与Hessian矩阵在非线性最小二乘法中的应用,用MatLab对非线性回归方程进行求解,拟合优度值达到0.999 86,修正后模型的物理意义更准确、表征精度更高。此外,还选用单元件非线性弹簧模型和单元件线性弹簧模型对上述复合纱线拉伸行为进行描述。结果表明,2种模型与该复合纱的实测值拟合亦很好,拟合优度值分别为0.999 85和0.988 04,其中单元件线性弹簧模型可对复合纱拉伸过程的平均模量进行表征。

关键词: 复合纱, 拉伸性能, 非线性三元件模型, 应力应变方程

Abstract:

Aining at the problem of inaccurate descripion of the theoretical model of the tensile mechanical behaviors of multi-component yarns, based on the Vangheluwe model, the tensile behavior of three-strand high performance composite yarn was analyzed, but the tensile behavior of three-strand high preformance composite yarn is not suitable for describing quasi-linear fiber, and the major disadvantage of the Vangheluwe model, however, is modified, that is, elastic modulus is equal to zero without strain to obtain a model accordingly. Taking the application of Jacobian matrix and Hessian matrix in nonlinear least square method (LSM) into cinsideration, the nonlinear regression equation was solved by MatLab, and the goodness of fit value reached 0.999 86. The physical meaning of the modified model was more precise, moreover, the accuracy of which was higher. In addition, one element model of the nonlinear and linear spring model was also employded to describe the tensile behavior of composite yarns. The results show that the two models has good fitting with the measured values of the composite yarns, and the theoretical analytec results on goodness of fit walue present at 0.999 85 and 0.99 04. Finally, the linear spring model of the element proposed can be used to characterize the average modulus of the tensile process of the composite yarns.

Key words: composite yarn, tensile property, nonlinear three elements model, stress-strain equation

[1] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
[2] 孟超然 毕雪蓉 李佳蔚 郁崇文. 丹蒽醌对氧化脱胶苎麻纤维理化性能的调控[J]. 纺织学报, 2018, 39(02): 78-85.
[3] 孙颖 刘俊岭 郑园园 陈利 李嘉禄. 碳/芳纶混编三维编织复合材料拉伸性能[J]. 纺织学报, 2018, 39(02): 49-54.
[4] 蔡冯杰 祝成炎 田伟 吕智宁 申晓. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
[5] 常玉萍 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能[J]. 纺织学报, 2017, 38(09): 59-65.
[6] 王勇 于伟东 王府梅. 在线展丝环锭复合纺纱技术及设备[J]. 纺织学报, 2016, 37(12): 160-166.
[7] 郭囊括 李丽辉 代方银 陈杨 敬凌霄. 柔性多轴向经编聚氨酯涂层织物的拉伸性能[J]. 纺织学报, 2016, 37(11): 59-063.
[8] 刘东奇 王喆 王翔 尹翠玉 张宇峰. 甲醇蛋白改性粘胶纤维的结构与性能[J]. 纺织学报, 2016, 37(09): 12-15.
[9] 吴波伟 张毅 黄帅 张卢娟 张孟洋. 拼纱根数对空气层组织织物拉伸性能的影响[J]. 纺织学报, 2016, 37(05): 47-0.
[10] 陈美玉 来侃 孙润军 陈立成 王玉. 大麻/聚乳酸复合发泡材料的力学性能[J]. 纺织学报, 2016, 37(01): 28-34.
[11] 钟智丽 廖镇东 张宏杰. 微溶解处理对大麻/棉混纺织物拉伸性能的影响[J]. 纺织学报, 2015, 36(10): 97-0.
[12] 杨菲 徐山青. 黄麻/豆腐渣/淀粉复合材料的制备及其性能[J]. 纺织学报, 2014, 35(8): 44-0.
[13] 孙淑瑶 纪峰 王岩 邱夷平 谢剑飞 娄琳. 小应力下织物拉伸和弯曲性能对其湿态贴体性的影响[J]. 纺织学报, 2014, 35(8): 27-0.
[14] 周颖 姚理荣 高强. 聚氨酯/聚偏氟乙烯共混膜防水透气织物的制备及其性能[J]. 纺织学报, 2014, 35(5): 23-0.
[15] 邵光伟 蒋金华 陈南梁. 柔性经编金属网格材料的切口敏感性[J]. 纺织学报, 2014, 35(3): 46-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!