纺织学报 ›› 2017, Vol. 38 ›› Issue (07): 130-134.doi: 10.13475/j.fzxb.20160606906

• 管理与信息化 • 上一篇    下一篇

基于视觉词袋模型的羊绒与羊毛快速鉴别方法

  

  • 收稿日期:2016-06-27 修回日期:2016-11-24 出版日期:2017-07-15 发布日期:2017-07-18

Rapid identification method of cashmere and wool based on bag-of-visual-word

  • Received:2016-06-27 Revised:2016-11-24 Online:2017-07-15 Published:2017-07-18

摘要:

为快速准确地鉴别羊绒和羊毛,提出一种基于视觉词袋模型的鉴别方法。该方法使用羊绒和羊毛的光学显微镜图像作为实验样本,将纤维鉴别问题转化为图像的分类问题。首先对光学显微镜图像进行预处理以增强特征,然后从纤维形态中提取局部特征并生成视觉单词,再依据视觉单词对纤维图像进行分类,从而达到鉴别纤维的目的。使用了4 400 幅纤维图像作为数据集,从中选择不同的羊绒和羊毛的混合比作为训练集和测试集,得到的识别率最高为86%,最低为81.5%,鉴别1 000根纤维需要的时间小于100 s,训练好的分类器可保存并用于后期的检测工作。

关键词: 羊绒, 羊毛, 视觉词袋模型, 图像处理, 快速鉴别

Abstract:

In order to identify cashmere and wool rapedly and accurately, a method based on bag-of-wisual-word was proposed. Optical microscope images of cashmere and wool were taken as experimental specimen in this method. The problem of fiber identification was changed to problem of image classification. Firstly, fiber images were pre-processed to enhance their characteristics. Then, local features were extracted from fiber morphology and these local features were converted to visual words. Fiber images can be classified using visual words mentioned above. The experimental dataset contains 4 400 fiber images. Different mixing ratio of cashmere and wool were selected as train set and test set from the dataset. In this experiment, the highest recognition rate is 86%, and the lowest is 81.5%. The time required to identify 1 000 fibers is shorter than 100 s. The trained classifier can be saved and used for the later detection.

Key words: cashmere, wool, bag-of-vosual-word, image processing, rapid identification

[1] 陆奕辰 王蕾 唐千惠 潘如如 高卫东. 应用图像处理的纱线黑板毛羽量检测与评价[J]. 纺织学报, 2018, 39(08): 144-149.
[2] 王瑞洁 李龙 秦彩霞 . 采用滑溜牵伸的低比例山羊绒混纺纺纱实践[J]. 纺织学报, 2018, 39(06): 24-28.
[3] 王雯雯 高畅 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018, 39(06): 136-141.
[4] 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135.
[5] 王雯雯 刘基宏. 应用优化霍夫变换的细纱断头检测[J]. 纺织学报, 2018, 39(04): 36-41.
[6] 王传桐 胡峰 徐启永 吴雨川 余联庆. 改进频率调谐显著算法在疵点辨识中的应用[J]. 纺织学报, 2018, 39(03): 154-160.
[7] 郑君红 李亮 刘让同 张丹. 羊毛角蛋白的制备及其对涤纶织物的整理[J]. 纺织学报, 2018, 39(03): 92-97.
[8] 任燕飞 巩继贤 付冉冉 张健飞 王富邦 陶宇庆. 微生物合成纳米灵菌红素及其对羊毛织物抗菌染色[J]. 纺织学报, 2018, 39(02): 91-96.
[9] 牟新刚 蔡逸超 周晓 陈国良. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(01): 139-145.
[10] 刘建勇 吴胜争 赵笑康. 生物酶协同催化体系及其对羊毛纤维的作用机制[J]. 纺织学报, 2018, 39(01): 71-78.
[11] 王飞 靳向煜. 应用卷积网络及深度学习理论的羊绒与羊毛鉴别[J]. 纺织学报, 2017, 38(12): 150-156.
[12] 薛日杰 王树根 施楣梧. TiO2-SnO2复合溶胶在羊毛阻燃整理中的应用[J]. 纺织学报, 2017, 38(12): 95-100.
[13] 贾丽霞 金崇业 刘瑞 单国华. 硅磷杂化阻燃整理对羊毛结构与热稳定性能的影响[J]. 纺织学报, 2017, 38(12): 101-105.
[14] 陈诚 贾丽霞 张初阳. 毛用防蛀萘醌色素的合成与性能评价[J]. 纺织学报, 2017, 38(10): 70-74.
[15] 朱俊平 路凯 柴新玉 钟跃崎 . 羊绒与羊毛直径的水平集中轴线法测量[J]. 纺织学报, 2017, 38(09): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!