纺织学报 ›› 2017, Vol. 38 ›› Issue (08): 62-67.doi: 10.13475/j.fzxb.20160801206

• 纺织工程 • 上一篇    下一篇

服用聚酰亚胺纤维织物的热学性能

  

  • 收稿日期:2016-08-05 修回日期:2017-03-21 出版日期:2017-08-15 发布日期:2017-08-10

Thermal properties of polyimide fiber fabrics for textiles

  • Received:2016-08-05 Revised:2017-03-21 Online:2017-08-15 Published:2017-08-10

摘要:

为研究聚酰亚胺纤维作为纺织服用纤维的热舒适性能,分别以聚酰亚胺纤维和聚酰亚胺针织物为研究对象,通过热重分析仪研究纤维的热力学特征,并对纤维的耐热性能进行测试,同时讨论织物结构对聚酰亚胺针织物阻燃性、保暖性及透气性能的影响。结果表明:可服用聚酰亚胺纤维有较好的耐热性能,在570℃左右开始发生热分解,在200℃下强度损失率较低,处理1.5 h后纤维强度仍可保持原纤维强度的80%左右;聚酰亚胺纤维织物有较好的阻燃性能,其极限氧指数均大于45%,且随织物面密度的增加,阻燃性增强;聚酰亚胺织物的保暖性受织物结构影响较大,对于结构稀松的织物,随透气量的增加保暖性不断下降,同时还受织物厚度的影响,在一定条件下,厚度对织物保暖性的影响起主导作用。

关键词: 聚酰亚胺纤维织物, 热学性能, 保暖性能, 燃烧性能

Abstract:

In order to study the thermal properties of polyimide fibers as textile fibers, polyimide fibers and polyimide knitted fabric were used as the research object. TG and DTA were used to analyze the thermodynamic property of polyimide fibers, and the heat resistance of the fibers were tested; at the same time, the influence of the fabric structure on the flame retardant, warmth retention properties and air permeability of polyimide fabrics was discussed. The results show that polyimide fiber have good heat resistance, began to thermally decomposition at about 570℃ and has lower strength lower strength loss at 200℃, and the strength of the fiber can still maintain at 80% of that of original fiber after treatment for 1.5 h. Polyimide fiber fabric have better flame retardantcy and the limit oxygen index greater than 45%, and the flame retardancy is enhancement with the increase of the surface density of the fabric; and the warmth retention property of the polyimide fabric are greatly influenced by fabric structure, for structure loose fabrics, the warmth retention decreased with increase of gas permeability, it is also influenced by the fabric thickness, and under certain conditions, the fabric thickness plays a leading role in the warm retention properties.

Key words: polyimide fiber fabric, thermal property, warmth retention, combustion behavior

[1] 魏丽菲 朱志国 靳昕怡 董振峰 王锐. 基于三(2-羟乙基)异氰尿酸酯的膨胀型阻燃剂对聚合物燃烧性能的影响[J]. 纺织学报, 2017, 38(09): 24-31.
[2] 杨树 李玛莎. 羊毛纤维集合体的分形结构与其保暖性的关系[J]. 纺织学报, 2017, 38(08): 11-15.
[3] 张宪胜 王然 王锐 晏雄 施楣梧. 基于锥形量热仪的纤维集合体燃烧性能测试方法[J]. 纺织学报, 2017, 38(02): 47-52.
[4] 崔俊杰 徐旭凡 马辉. 多孔绵材料层对防水透湿复合织物性能的影响[J]. 纺织学报, 2016, 37(11): 55-58.
[5] 蔡薇琦 马崇启 阚永葭 杨金莲 李君丽 . 灰色聚类分析在织物热学性能评价中的应用[J]. 纺织学报, 2016, 37(11): 64-67.
[6] 闫红芹 凤权 彭祥 谢飞. 壳聚糖纤维的热稳定性和燃烧性能[J]. 纺织学报, 2015, 36(10): 12-0.
[7] 杨莉 毕松梅 徐文正 周磊. 蛋白质改性纤维素复合纤维的热力学性能[J]. 纺织学报, 2013, 34(11): 15-.
[8] 裔婷婷, 潘志娟. 静电纺再生加工对横纹金珠丝微观结构的影响[J]. 纺织学报, 2012, 33(4): 1-5.
[9] 夏鑫, 蒋淑冬, 魏取福, 李静. 溶剂对PVAc/SnO2杂化纳米纤维可纺性及热学性能的影响[J]. 纺织学报, 2011, 32(12): 1-5.
[10] 付贤文, 高晶. 鹅、鸭绒纤维形态结构差异及对保暖性能的影响[J]. 纺织学报, 2011, 32(12): 10-14.
[11] 王建刚;袁小红;甘应进;陈东生. 莲纤维的热学性能[J]. 纺织学报, 2010, 31(2): 7-9.
[12] 何建新;唐予远;王善元. 醋酸纤维素的结晶结构与热性能[J]. 纺织学报, 2008, 29(10): 12-16.
[13] 刘维;周苏萌;韩仕峰;王府梅. 羽绒/木棉混纤絮料的性能[J]. 纺织学报, 2007, 28(11): 17-20.
[14] 杨庆斌<sup></sup>于伟东<sup></sup>. 大豆蛋白纤维的热学性能[J]. 纺织学报, 2005, 26(2): 53-55.
[15] 张建春;施楣梧;刘巍;姚穆. Lyocell纤维的热学性能研究[J]. 纺织学报, 2000, 21(03): 6-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!