纺织学报 ›› 2018, Vol. 39 ›› Issue (07): 153-158.doi: 10.13475/j.fzxb.20170906906

• 管理与信息化 • 上一篇    下一篇

花型样条曲线加工代码生成算法

  

  • 收稿日期:2017-09-30 修回日期:2018-01-31 出版日期:2018-07-15 发布日期:2018-07-16

Algorithm of processing code generation for pattern spline curves

  • Received:2017-09-30 Revised:2018-01-31 Online:2018-07-15 Published:2018-07-16

摘要:

为简化绗缝、提花、针织等自动化设备的花型轮廓设计,弥补现有纺织设备中复杂曲线无法直接插补的缺陷,增加B 样条曲线的插补功能,通过双圆弧分段逼近三次准均匀B 样条曲线的方法,获得只含有微段直线和微段圆弧数据的简单花样,并采用直线插补算法、圆弧插补算法对花样数据进行针迹点均匀分布处理,同时运用MatLab进行编程仿真,验证其有效性。结果表明:在误差范围内,可使逼近的双圆弧在连接点处光滑连接并达到一阶导数连续且拟合段数最少;花样作业图案的针迹点分布均匀,误差小,满足复杂花样加工的要求,简化数值计算和编程,可实现复杂曲线数控织造的工程运用。

关键词: 花型轮廓,  B 样条曲线, 加工代码, 双圆弧拟合, MatLab 仿真, 花样数据

Abstract:

In order to simplify the design of pattern outline of the automatic equipment such as quilting, jacquard, knitting and so on, make up the defect that the complex curve in the existing textile equipment cannot be directly implanted, and increase the interpolation function of the B spline curve, the method for separating the spline curve into micro segment line or circle was used to obtain the simple pattern data containing only micro-segment straight line and micro-segment arc information. The line interpolation algorithm and circular interpolation were adopted to distribute stitching points on the pattern data uniformly. Programming simulation was carried out to verify validity using MatLab. The application results show that the approximate double circular arc can be smooth connected at the connection point together with first distributed continity and the number of fitting segments is least. The stitches of the pattern are evenly distributed together with the small error. The complex patterns interpolation can reach the requirements for processing and the numerical calculation is simplified. This method realizes complex curve application in computer numerical xintrol weaving engineering.

Key words: pattern outline, B spline curve, processing code, double-arc approach, MatLab simulation, pattern data

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!