," />   ,"/> polyacrylonitrile micro-nanofiber, macro preparation,diameter control, composite fiber menbrane, efficient air filter material ,"/> 梯度复合聚丙烯腈纳米纤维膜的制备及其过滤性能

纺织学报 ›› 2018, Vol. 39 ›› Issue (09): 1-7.doi: 10.13475/j.fzxb.20170900107

• 纤维材料 •    下一篇

梯度复合聚丙烯腈纳米纤维膜的制备及其过滤性能

    

  1.  
  • 收稿日期:2017-09-01 修回日期:2018-05-01 出版日期:2018-09-15 发布日期:2018-09-12
  • 基金资助:

     

Preparation and filtration performance of polyacrylonitrile graded composite nanofiber membrane

  • Received:2017-09-01 Revised:2018-05-01 Online:2018-09-15 Published:2018-09-12

摘要:

为发挥纳米纤维膜在高效空气过滤材料领域的作用并实现连续化生产,通过自制静电辅助溶液喷射纺丝实验机,采用Box-Behnken试验设计方法,建立了聚丙烯腈(PAN)纳米纤维直径和纺丝工艺参数的关系。利用在线复合方式连续制备了不同直径梯度复合的PAN纳米纤维膜并将其用于空气过滤领域,并对纤维膜的结构和形貌进行了表征。结果表明:通过调整纺丝工艺参数可有效地实现对纤维直径的控制;同时由该技术所制得的复合膜在消除静电后,通过物理筛分作用,对0.4 μm的癸二酸二辛酯粒子具有99.923 %的过滤效率和117 Pa的压降,对大于0.8 μm的粒子具备100 %的过滤效率。

关键词: 聚丙烯腈微纳米纤维, 宏量制备, 直径调控, 复合纤维膜,   ')"> 高效空气过滤材料

 

Abstract:

In order to play the role of nanofiber membrane in field of high efficiency air filter material and realize the continuous production of nanofiber filter material, the Box-Behnken trial design method was used to establish the relationship between polyacrylonitrile (PAN) nanofiber diameter and spinning process parameters. The nanofibers used in the field of air filtration were prepared with a self-made electrostatic-induction-assisted solution blown machine, and PAN nanofibers with controllable diameter were prepared continuously. PAN nanofibers with different diameters were prepared by continuous on-line composite design. The structure and morphology of the fiber membrane were prepared by continuous on-line composite design. The structure and morphology of the fiber membrane were characterized. The reaults indicates that by adjusting the spinning process parameters, the control of fiber diameter can be effectively achieved. Meanwhile, the composite membrane by this technology is fabricated by physical screening after eliminating static electricity. The removal rate and pressure drop of the composite membrane for dioctyl sebacate particles (0f 0.4 μm) are  99.923 % and 117 Pa, respectively. The filtration efficiency for particles with larger than 0.8 μm is 100%.

Key words: polyacrylonitrile micro-nanofiber')">

polyacrylonitrile micro-nanofiber, macro preparation, diameter control, composite fiber menbrane, efficient air filter material

[1] YANG Y J, ZHANG, S C, ZHAO, X L, et al. Sandwich structured polyamide-6/polyacrylonitrile nanonets/bead-on-string composite membrane for effective air filtration[J]. Separation and purification technology, 2015, 152: 14-22.
[2] WANG CHIU-SEN, OTANI YOSHIO. Removal of Nanoparticles from Gas Streams by Fibrous Filters: A Review[J]. Industrial & Engineering Chemistry Research, 2012, 52(1): 5-17.
[3] WANG N, RAZA AIKIFA, SI Y, et al. Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration[J]. Journal of Colloid and Interface Science, 2013, 398: 240-246.
[4] ROHIT UPPAL, GAJANAN BHAT, CHRIS EASH, et al. Meltblown nanofiber media for enhanced quality factor[J]. Fibers and Polymers, 2013, 14(4): 660-668.
[5] HUNG, C. W.W. LEUNG, Filtration of nano- aerosol using nanofiber filter under low Peclet number and transitional flow regime[J]. Separation and Purification Technology, 2011, 79(1): 34-42.
[6] D THOMASA, P PENICOTA, P CONTALA. Clogging of fbrous flters by solid aerosol particles Experimental and modelling study[J]. Chemical Engineering Science, 2011. 56: 3549–3561.
[7] MA H, B.S. HSIAO, B. CHU. Thin-film nano- fibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids[J]. Polymer, 2011, 52(12): 2594-2599.
[8] ZHAO X L, WANG S, YIN X, et al., Slip-Effect Functional Air Filter for Efficient Purification of PM2.5[J]. Scientific Reports, 2016,6(1): 1-11
[9] SAMBAER W, M ZATLOUKAL, D KIMMER. 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range[J]. Chemical Engineering Science, 2012, 82: 299-311.
[10] ZHANG S C, TANG N, CAO L T, et al. Highly Integrated Polysulfone/Polyacrylonitrile/Polyamide-6 Air Filter for Multilevel Physical Sieving Airborne Particles[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 29062-29072.
[11] Y C AHN, S K PARK, G T KIM. Development of high efficiency nanofilters made of nanofibers[J]. Current Applied Physics, 2006, (6): 1030–1035.
[12] LI L, FREY MARGARET W, GREEN THOMAS B. Modification of air filter media with nylon-6 nanofibers[J]. Journal of engineered fibers and fabrics, 2006. (1): 1-22.
[13] GIVEHCHI RAHELEH, LI Q H, TAN Z C, Quality factors of PVA nanofibrous filters for airborne particles in the size range of 10–125nm[J]. Fuel, 2016, 181: 1273-1280.
[14] NICOSIA A, KEPPLER T, MüLLER F A, et al., Cellulose acetate nanofiber electrospun on nylon substrate as novel composite matrix for efficient, heat-resistant, air filters[J]. Chemical Engineering Science, 2016, 153: 284-294.
[15] LEUNG W W, C HUNG, P YUEN. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate[J]. Separation and Purification Technology, 2010, 71(1): 30-37.
[16] MEDEIROS E S, GREGORY M K, ARTUR P, et al. Solution Blow Spinning: A New Method to Produce Micro- and Nanofibers from Polymer Solutions[J]. Journal of applied polymer science, 2009, 113(4): 2322-2330.
[17] ZHUANG X P, SHI L, JIA K F, et al. Solution blown nanofibrous membrane for microfiltration[J]. Journal of Membrane Science, 2013, 429: 66-70.
[18] LIU R F, XU X L, ZHUANG X P, et al. Solution blowing of chitosan/PVA hydrogel nanofiber mats[J]. Carbohydrate Polymers, 2014, 101: 1116-1121.
[19] TANG D Y, ZHUANG X P, ZHANG C, et al. Generation of nanofibers via electrostatic-Induction- assisted solution blow spinning[J]. Journal of applied polymer science, 2015, 132(4232631).
[20] LEE E S, Fung C C, ZHU Y F. Evaluation of a High Efficiency Cabin Air (HECA) Filtration System for Reducing Particulate Pollutants Inside School Buses[J]. Environmental Science & Technology, 2015, 49(6): 3358-3365.
[21] CHAVHAN M V, A MUKHOPADHYAY. Fibrous Filter to Protect Building Environments from Polluting Agents: A Review[J]. Journal of The Institution of Engineers (India): Series E, 2016, 97(1): 63-73.
[1] 靳世鑫 辛斌杰 郑元生. 静电纺丝法宏量制备纳米纤维的研究进展[J]. 纺织学报, 2018, 39(03): 175-180.
[2] 李静静 卢辉 蒋洁 张思航 顾迎春 陈胜. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018, 39(02): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史途停;陈建勇. 入世后中国纺织业的发展趋势及对策[J]. 纺织学报, 2004, 25(02): 114 -115 .
[2] 詹伯君. 煮茧机压力温度自动调节系统[J]. 纺织学报, 1982, 3(09): 30 -35 .
[3] 曹成生. 香港棉纺织工业的经历和趋向[J]. 纺织学报, 1982, 3(09): 60 -62 .
[4] 周罗庆. 成圈机件对纱线作用的缺陷与改进[J]. 纺织学报, 2004, 25(03): 84 -86 .
[5] 张亚莹;褚益清;张之兰. 闪色织物及其开发[J]. 纺织学报, 1992, 13(07): 27 -30 .
[6] 戴瑾瑾;朱泉;张洵栓;何瑾馨;张宝珍;陆志勋;蔡幼明;吴健雄. CHP-91袜用防蚊整理剂及其应用[J]. 纺织学报, 1992, 13(07): 31 -32 .
[7] 郭秉臣;董振礼;高殿斌. 兔毛织物的掉毛探讨[J]. 纺织学报, 1992, 13(07): 33 -34 .
[8] 成玲;何勇. 印染机械多电机同步控制系统[J]. 纺织学报, 2005, 26(1): 97 -99 .
[9] 张治国;尹红;陈志荣. 纤维后整理用抗静电剂研究进展[J]. 纺织学报, 2004, 25(03): 121 -122 .
[10] 李培仁;吴立峰. 聚丙烯纤维色母粒着色的流动及形态变化[J]. 纺织学报, 1984, 5(08): 5 -10 .