纺织学报 ›› 2018, Vol. 39 ›› Issue (09): 160-168.doi: 10.13475/j.fzxb.20171104709

• 机械与器材 • 上一篇    下一篇

旋转式多臂机提综机构动力学分析与优化

    


  • 收稿日期:2017-11-24 修回日期:2018-06-06 出版日期:2018-09-15 发布日期:2018-09-12
  • 基金资助:

     

Dynamic analysis and optimization of rotary dobby lifting comprehensive mechanism

  • Received:2017-11-24 Revised:2018-06-06 Online:2018-09-15 Published:2018-09-12

摘要:

为提高旋转式多臂机的整体性能,对提综机构进行深入的动力学特性研究。首先,基于凸轮机构的解析法设计理论,结合织机开口工艺要求,设计出旋转式多臂机提综机构凸轮廓线,应用Lagrange 方程建立机构的动力学模型,并对机构进行运动学分析;其次,建立机械系统动力学自动分析(ADAMS)虚拟样机模型,对比分析MatLab数值仿真和ADAMS 虚拟仿真所求大圆盘驱动力矩的一致性,验证所建动力学模型的正确性和有效性;最后,依据所构建的动力学模型,分别就大圆盘转速、综框的材料及动程、凸轮廓线对大圆盘驱动力矩的影响进行仿真分析和优化。结果表明:减小综框质量和综框动程和采用五次项修正等速运动规律的提综凸轮廓线,均可减小大圆盘驱动力矩的波动幅值,改善提综机构整体动力学性能。

关键词: 提综机构, 凸轮廓线, Lagrange 方程, 动力学

Abstract:

In order to improve the overall performance of the lifting comprehensive mecanism, the dynamic characteristics were deeply studied. Firstly, based on the analytical design theory of the cam mechanism and the requirement of the loom shedding process, the cam profile of the rotary dobby lifting mechanism was designed. On this basis, the kinematic model was established. The dynamic model of the mechanism was established by using the Lagrange equation. Secondly, the virtual prototype of this mechanism was established in automatic dynamic analysis of mechanical sysems (ADAMS) , and the the drive torque for large disk by MatLab and ADAMS were compared and analyzed to test the correctness and validity of the proposed dynamic model. Finally, based on the constructed dynamic model, the influence of rotating speed of the big disk, the material and the movement distance of the heald frame, the theoretical profile of the heald cam on the driving torque of the large disk were simulated and optimized, respectively. The results show that reducing the mass and movement distance of heald frame, using a cam profile of the lifting comprehensive mechanism with five modified constant speed motion laws can reduce the fluctuation quantity of the driving torque for the large disk and improve the whole dynamic performance of the lifting comprehensive mechanism.

Key words: lifting comprehensive mechanism, camprofile, Lagrange equation, dynamics

参考文献
[1] 祝章琛. 回转多臂机的设计与分析[J]. 纺织学报, 1985, 6(2): 97-100.
ZHU Zhangchen. Designing and analysing of rotary dobby[J]. Journal of Textile Research, 1985, 6(2): 97-100.
[2] ABDULLA G, HASCELIK B, PALAMUTCU S, et al. Synthesis work about driving mechanism of a novel rotary dobby mechanism[J]. Tekstil ve Konfeksiyon, 2010, 20(3): 218-224.
[3] 高大牛, 沈毅, 刘春雷. GT421型多臂机选综共轭凸轮设计[J]. 现代纺织技术, 2012, 20(01): 27-31.
GAO Daniu, SHEN Yi, LIU Chunlei. The design of election comprehensive conjugate cam of GT421 dobby[J]. Advanced Textile Technology, 2012, 20(01): 27-31.
[4] 沈毅, 高大牛, 刘春雷. 基于ADMAS的GT421型多臂机机构动态仿真[J]. 纺织学报, 2012, 33(08): 119-123+129.
SHEN Yi, GAO Daniu, LIU Chunlei, Dynamic simulation of mechanism of GT421 dobby based on ADMAS[J]. Journal of Textile Research, 2012, 33(08): 119-123+129.
[5] 沈毅, 杨明, 邓文俊. 基于LabVIEW的3620电子多臂机测试系统研究[J]. 现代纺织技术, 2015, 23(04): 24-28.
SHEN Yi, YANG Ming, DENG Wenjun. Research on 3620 rotary electronic dobby test based on LABVIEW[J]. Advanced Textile Technology, 2015, 23(04): 24-28.
[6] 季海彬, 周香琴, 成小军. 基于开口工艺要求的多臂机机构参数分析[J]. 浙江理工大学学报(自然科学版), 2016, 35(02): 205-210.
JI Haibin, ZHOU Xiangqin, CHENG Xiaojun. Analysis on mechanism parameters of dobby based on requirement of opening process[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2016, 35(02): 205-210.
[7] EREN R, OZKAN G, TURHAN Y. Kinematics of rotary dobby and analysis of heald frame motion in weaving process[J]. Textile Research Journal, 2008, 78(12): 1070-1079.
[8] 牛雪梅, 高国琴, 刘辛军, 鲍智达. 新型驱动冗余并联机构动力学建模及简化分析[J]. 机械工程学报, 2014, 50(19): 41-49.
NIU Xuemei, GAO Guoqin, Liu Xinjun, et al. Dynamic formulation and simplified model of a novel 3-DOF parallel mechanism with actuation redundancy[J]. Chinese Journal of Mechanical Engineering, 2014, 50(19): 41-49.
[9] LEI Jingtao, YU Huangying, Wang Tianmiao. Dynamic bending of bionic flexible body driven by Pneumatic Artificial Muscles(PAMs) for spinning gait of quadruped robot[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1): 11-20.
[10] 陈修龙, 孙德才, 王清. 基于拉格朗日的冗余驱动并联机构刚体动力学建模[J]. 农业机械学报, 2015, 46(12): 329-336.
CHEN Xiulong, SUN Decai, WANG Qing. Rigid dynamics modeling of redundant actuation parallel mechanism based on Lagrange method[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(12): 329-336.
[11] 张策. 机械动力学[M]. 第二版. 北京: 高等教育出版社, 2008.
ZHANG Ce. Machinery Dynamics(M). Second Edition. Beijing: Higher Education Press, 2008.
[12] REZAEE M, FATHI R. Improving the working performance of automatic ball balancer by modifying its mechanism[J]. Journal of Sound and Vibration, 2015, 358: 375-391.
[13] JIANG Leijie, GAO Bingtuan, ZHU Zhenyu. Dynamic modeling and control of a cable-driven parallel mechanism with a spring spine[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2017, 231(21): 3940-3958.
[14] 金国光, 秦凯旋, 魏展, 袁汝旺, 周国庆. 剑杆织机柔性从动件共轭凸轮打纬机构动力学分析[J]. 纺织学报, 2016, 37(05): 137-142.
JIN Guoguang, QIN Kaixuan, WEI Zhan, et al. Dynamic analysis of flexible follower conjugate cam beating-up mechanism in rapier loom[J]. Journal of Textile Research, 2016, 37(05): 137-142.
[15] GUHA A, AMARNATH C, KURIEN I K, et al. Linkage driven dobby with dwell[J]. Textile Research Journal, 2009, 79(9): 804-809.
[16] ZHANG Lei, YU Kelong, CHEN Shaozhong, et al. Flexible dynamics simulation for spatial four bar linkage weft insertion mechanism based on ANSYS and ADAMS [J]. Journal of Textile Research, 2013, 34(5): 116-120.
[17] GU Cheng, CHEN Xinbo. A novel universal reducer integrating a planetary gear mechanism with an RCRCR spatial mechanism[J]. Strojniski Vestnik-Journal of Mechanical Engineering, 2016, 62(12): 730-739.
[18] KIM J. Design of a compact 18-speed epicyclic transmission for a personal mobility vehicle[J]. International Journal of Automotive Technology, 2016, 17(6): 977-982.
[19] 石永刚, 吴央芳. 凸轮机构设计与应用创新[M]. 北京: 机械工业出版社, 2007.8.
SHI Yonggang, WU Yangfang. Design and Application Innovation of Cam Mechanism[M]. Beijing: China Machine Press, 2007.8.
[1] 陈萌 朱方龙 . 热辐射下织物内水分干燥实验及其动力学研究[J]. 纺织学报, 2018, 39(08): 52-57.
[2] 娄佳慧 王锐 张文娟 董振峰 朱志国 张秀芹 刘继广. 有机钛-硅催化剂合成聚酯的动力学研究[J]. 纺织学报, 2018, 39(07): 1-7.
[3] 易兵 胡倩 杨辉琼 阳海 李良臣 区泽棠. 酸性红37光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018, 39(06): 81-88.
[4] 高慧英 蒙冉菊 华佳瑞 邵碧琼 刘琳 姚菊明. 改性废棉对水溶液中Cu2+的吸附性能[J]. 纺织学报, 2017, 38(12): 112-118.
[5] 张雷 苏宗帅 季祖鹏 顾萍萍. 共轭凸轮引纬机构的凸轮轮廓线光顺与反求[J]. 纺织学报, 2017, 38(12): 141-149.
[6] 王晓春 闫金龙 张丽平 赵国樑 张健飞. 超高分子质量聚乙烯纤维分散染料染色性能[J]. 纺织学报, 2017, 38(11): 84-90.
[7] 王盼 程隆棣 华志宏. 刺辊锯齿螺旋倾角与分梳质量关系的理论研究[J]. 纺织学报, 2017, 38(09): 131-135.
[8] 周明星 孟婥 孙以泽 孙旭东. 纤维定量检测系统中烧杯组件液体晃动动态特性与响应[J]. 纺织学报, 2017, 38(08): 132-138.
[9] 刘宜胜 徐海亮 吴震宇 袁嫣红. 三维编织机运动仿真分析及其轨道优化设计[J]. 纺织学报, 2017, 38(04): 134-139.
[10] 戈欢 朱志国 王锐 尹会会 王睿 张秀芹. 不同分子质量聚乳酸立体复合物的结晶性能及球晶形貌[J]. 纺织学报, 2016, 37(2): 27-0.
[11] 冯倩倩 朱方龙 信群 陈萌. 膨胀型阻燃棉织物的热降解动力学[J]. 纺织学报, 2016, 37(12): 81-86.
[12] 张磊 郝露 徐山青. 废旧织物制备活性炭对亚甲基蓝的吸附动力学[J]. 纺织学报, 2016, 37(12): 76-80.
[13] 石春乐 陈炜 杨以雄 . 快时尚品牌产品开发流程对时间绩效的影响[J]. 纺织学报, 2016, 37(10): 113-119.
[14] 张静静 王颖 宋丹 国凤敏 陈超. 聚对苯二甲酸乙二醇酯与聚对苯二甲酸丁二醇酯的热分解性能[J]. 纺织学报, 2016, 37(07): 34-38.
[15] 金国光 秦凯旋 魏展 袁汝旺 周国庆. 剑杆织机柔性从动件共轭凸轮打纬机构动力学分析[J]. 纺织学报, 2016, 37(05): 137-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[2] 张国利;李嘉禄;李学明. T型壁板RFI缝合复合材料的屈曲性能[J]. 纺织学报, 2006, 27(3): 67 -70 .
[3] 陈东生.;甘应进.;张宏伟;王建刚;万雅波;白越. 混纺活性炭纤维针刺毡的活化与吸附关系[J]. 纺织学报, 2006, 27(4): 74 -76 .
[4] 张顺花;黄志超;程贞娟;凌荣根;孙福. 改性聚丙烯纤维的超分子结构与力学性能研究[J]. 纺织学报, 2004, 25(03): 23 -25 .
[5] 朱斐. 调整纺织产品结构和进行产品开发[J]. 纺织学报, 1982, 3(09): 63 -64 .
[6] 李瑞洲;刘亚利;孙占宾. 竹浆纤维性能分析[J]. 纺织学报, 2004, 25(03): 76 -77 .
[7] 周志宇;杨东鹤. 基于计算机视觉技术的蚕丝截面积测量[J]. 纺织学报, 2005, 26(1): 36 -38 .
[8] 熊杰;萧庆亮;许淑燕;俞巧珍;徐新建. AFRP-水泥砂浆体系的耐热性能[J]. 纺织学报, 2005, 26(1): 59 -61 .
[9] 钟原静;陈宗农;朱新杰. 基于DSP的高速剑杆织机控制系统[J]. 纺织学报, 2005, 26(1): 87 -89 .
[10] 张东音. 摇纱机集成电路满绞停车装置的改进[J]. 纺织学报, 1984, 5(07): 41 .