纺织学报 ›› 2018, Vol. 39 ›› Issue (10): 22-27.doi: 10.13475/j.fzxb.20180402906

• 纤维材料 • 上一篇    下一篇

低取代羟乙基纤维素在碱溶剂中的溶解行为及其机制

    

  1.  
  • 收稿日期:2018-04-16 修回日期:2018-07-14 出版日期:2018-10-15 发布日期:2018-10-17
  • 基金资助:

     

Dissolution behavior and mechanism of hydroxyethyl cellulose with low molar substitution in alkali solvent

  • Received:2018-04-16 Revised:2018-07-14 Online:2018-10-15 Published:2018-10-17

摘要:

为改善纤维素在氢氧化钠(NaOH)水溶液中的溶解性能,通过醚化改性制备了低取代羟乙基纤维素(HEC),并借助光学显微镜、核磁共振仪、差热扫描量热仪和透射电子显微镜等研究了HEC在质量分数为8%的NaOH水溶液中的溶解行为及溶解机制。结果表明:低温下NaOH溶剂和水分子可结合形成尺寸合适、结构稳定的NaOH水合分子,与HEC大分子上的羟基键合形成HEC-NaOH-H2O缔合结构,切断了HEC大分子间氢键,HEC直接溶解;醚化改性后亲水性侧链的引入减弱了分子间作用力,增强了HEC与NaOH水合分子之间的作用强度,增强了缔合结构稳定性,促进了HEC在NaOH溶剂中的良好溶解;沿纤维长度方向HEC最外层膜溶胀成球形并逐渐破裂溶解,最终以长度为微米级、宽度为10~80 nm的微纤维形式分散在溶剂中。

关键词: 羟乙基纤维素, 低取代聚合物, 氢氧化钠, 溶解行为, 溶解机制

Abstract:

In order to improve the solubility of cellulose in NaOH solution, hydroxyethyl cellulose (HEC)with low molar substitution was prepared. The interactions between HEC (8%) and NaOH in solution were investigated by optical microscopy, nuclear magnetic resonance, dkfferential scanning calorimetry and transmission electron mecroscopy. The results show that at low temperatures (below 0 ℃) NaOH solvent combines with water molecules to form NaOH hydrates molecules with proper size and stable structure, which are bonded with hydroxy on HEC  molecules to form HEC-NaOH-H2O water association structure. HEC is gradually dissolved following with the breadage of intermolecular hydrogen bond of HKC. After etherification, the introduced hydrophilic side chains weakens the interactions between HEC molecules but strengthens interactions between HEC chains and NaOH hydrates molecules, enhancing the stability of association structure and promoting the dissolution of HEC solvent, the HEC is gradually dissolved and finally dispersed in the length of micronscale and the width around of 10-80 nm.

Key words: hydroxyethyl cellulose, polymer with low molar substitution, sodium hydroxide, dissolution behavior, dissolution mechanism

[1] FINK H, WEIGEL P, PURZ H, et al. Structure formation of regenerated cellulose materials from NMMO-solutions[J]. Progress in Polymer Science, 2001, 26(9): 1473-1524.
[2] ZHU S, WU Y, CHEN Q, et al. Dissolution of cellulose with ionic liquids and its application: a mini-review[J]. Green Chemistry, 2006, 37(30): 325-327.
[3] ISOGAI A, ATALLA R. Dissolution of cellulose in aqueous NaOH solutions[J]. Cellulose, 1998, 5(4): 309-319.
[4] XIONG B, ZHAO P, HU K, et al. Dissolution of cellulose in aqueous NaOH/urea solution: role of urea[J]. Cellulose, 2014, 21(3): 1183-1192.
[5] Yan L, Chen J, Bangal P. Dissolving cellulose in a NaOH/thiourea aqueous solution: a topochemical investigation[J]. Macromolecular Bioscience, 2007, 7(9-10): 1139-1148.
[6] Fu F, Zhou J, Zhou X, Zhang L, Li D, Kondo T. Green method for production of cellulose multifilament from cellulose carbamate on a pilot scale[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2363-2370.
[7] GUO Y, ZHOU J, ZHANG L. Dynamic viscoelastic properties of cellulose carbamate dissolved in NaOH aqueous solution[J]. Biomacromolecules, 2011, 12(5): 1927-1934.
[8] LI D, ZHOU X, YANG J, et al. Spinnability of low-substituted hydroxyethylcellulose sodium hydroxide aqueous solutions[J]. Journal of Applied Polymer Science, 2010, 117(2): 767-774.
[9] WANG W, LI F, YU J, et al. Structure and properties of novel cellulose-based fibers spun from aqueous NaOH solvent under various drawing conditions. Cellulose, 2015, 22(2): 1333-1345.
[10] LI F, WANG W, WANG X, et al. Changes of structure and property of alkali soluble hydroxyethyl celluloses (HECs) and their regenerated films with the molar substitution.[J]. Carbohydrate Polymers, 2014, 114(114):206-212.
[11] IRENE N, WOLFGANG W, BURKART P, et al. Characterization of cellulose and cellulose derivatives in solution by high resolution carbon-13 NMR spectrometry. Progress in Polymer Science, 1994, 19(1): 29-78
[12] EGAL M, BUDTOVA T, NAVARD P. Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 oC and the limit of cellulose dissolution[J]. Biomacromolecules, 2007, 8(7): 2282-2287.
[13] ROY C. Etude de mélanges de cellulose dans des solutions aqueuses de soude[D]: école Nationale Supérieure des Mines de Paris, 2002.
[14] WANG W, LI F, YU J, et al. A thermal behavior of low-substituted hydroxyethyl cellulose and cellulose solutions in NaOH-water[J]. Nordic Pulp & Paper Research Journal, 2015, 30(1).
[15] JIANG Z, LU A, ZHOU J, et al. Interaction between –OH groups of methylcellulose and solvent in NaOH/urea aqueous system at low temperature[J]. Cellulose, 2012, 19(3): 671-678.
[16] KUO Y, HONG J. Investigation of solubility of microcrystalline cellulose in aqueous NaOH[J]. Polymers for advanced technologies, 2005, 16(5): 425-428.
[17] CAI J, ZHANG L, LIU S, et al. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures[J]. Macromolecules, 2008, 41(23): 9345-9351
[1] 钟智丽 朱敏 张宏杰 翁琦. 大麻纤维在氯化锂/N,N-二甲基乙酰胺溶解体系中的溶解特性[J]. 纺织学报, 2016, 37(11): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[2] 袁松鹤. 微细旦涤纶线的研制开发[J]. 纺织学报, 2000, 21(05): 48 -49 .
[3] 周玉麟. 纺织工业部召开工艺技术路线研究座谈会[J]. 纺织学报, 1986, 7(04): 32 .
[4] 吴奇山. A186系列梳棉机轧辊传动中介轮损坏原因及解决方法[J]. 纺织学报, 1989, 10(07): 48 .
[5] 潘伯荣. 在台车上编织苧麻纱的工艺分析[J]. 纺织学报, 1991, 12(01): 20 -23 .
[6] 杨帮华<sup></sup>高晓丁<sup></sup>宋栓军<sup></sup> . 基于虚拟仪器的织机经纱张力测试方法[J]. 纺织学报, 2005, 26(1): 90 -91 .
[7] 徐日曦. 单机管理和生产稳定性分析[J]. 纺织学报, 1984, 5(08): 56 -59 .
[8] 梅兴波;顾伯洪. 预测织物拉伸性能的BP网络方法[J]. 纺织学报, 2000, 21(05): 28 -30 .
[9] 纪峰;李汝勤. 基于粒子-弹簧系统的面料仿真模型[J]. 纺织学报, 2004, 25(01): 42 -43 .
[10] 陈友余. 升降往复式染纱机的定时控制[J]. 纺织学报, 1985, 6(07): 33 -34 .